Numerical modelling of shot peening process and corresponding products: Residual stress, surface roughness and cold work prediction

2011 ◽  
Vol 205 (19) ◽  
pp. 4480-4494 ◽  
Author(s):  
G.I. Mylonas ◽  
G. Labeas
2020 ◽  
Vol 398 ◽  
pp. 126054 ◽  
Author(s):  
Qinjie Lin ◽  
Huaiju Liu ◽  
Caichao Zhu ◽  
Difa Chen ◽  
Shuangshuang Zhou

2000 ◽  
Author(s):  
Hector Carreon ◽  
Peter B. Nagy

Abstract Shot peening is widely used in the aerospace and other industries to increase the damage tolerance of metal parts via producing a thin surface layer of compressive residual stress that prevents crack initiation and retards crack growth during service. Nondestructive evaluation of the prevailing compressive residual stress in the shallow subsurface layer is complicated by the adverse effects of shot peening, such as surface roughness and cold work that manifests itself through increased dislocation density and localized texture. Recent research efforts have revealed that conventional ultrasonic and eddy current NDT methods are simply too sensitive to surface roughness to quantitatively assess the subtle variations in mechanical and electrical properties that are caused by shot peening. On the other hand, noncontacting thermoelectric techniques are very unique among all other methods used in nondestructive materials characterization in that they are solely sensitive to intrinsic material variations regardless of the size, shape, and surface quality of the specimen to be tested. Noncontacting thermoelectric methods, based on magnetic detection of local thermoelectric currents around inhomogeneities in metals when a temperature gradient is established throughout the specimen, are especially well suited for the characterization of shot peened surfaces. Experimental evidence suggests that this method can reliably detect and quantitatively assess otherwise hidden variations in material properties within the shallow surface layer of shot peened specimens. The thermoelectric method is sensitive to all three “material” effects of shot peening, namely residual stress, local texture, and increased dislocation density, but it is entirely insensitive to its “geometrical” by-product, i.e., the rough surface topography. Further development of the thermoelectric method is necessary to study the underlying physical phenomena before it can be successfully adapted to practical inspection problems, but the preliminary results presented in this paper are very promising.


2011 ◽  
Vol 462-463 ◽  
pp. 1355-1360
Author(s):  
Omar Suliman Zaroog ◽  
Aidy Ali ◽  
Sahari B. Barkawi

It is important to account for residual stress relaxation phenomenon in the design of the component. Specimens of 2024-T351 aluminium alloy were used in this study. The specimens were shot peened under three different shot peening intensities. Cyclic tests for two load magnitudes were performed for 1, 2, 10, 1000 and 10000 cycles. Residual stresses, microhardness and the cold work percentage were measured at initial state and after each loading cycle for the three shot peening intensities and for the two loads. The study revealed that most of the drop in the residual stress, microhardness and cold work happened in the first cycle are dependent on the applied load.


2020 ◽  
Vol 183 ◽  
pp. 105785 ◽  
Author(s):  
Jizhan Wu ◽  
Huaiju Liu ◽  
Peitang Wei ◽  
Qinjie Lin ◽  
Shuangshuang Zhou

Metals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 783
Author(s):  
Karunathilaka ◽  
Tada ◽  
Uemori ◽  
Hanamitsu ◽  
Fujii ◽  
...  

Cold forging is a metal forming that which uses localized compressive force at room temperature. During the cold forging process, the tool is subjected to extremely high loads and abrasive wear. Lubrication plays an important role in cold forging to improve product quality and tool life by preventing direct metallic contact. Surface roughness and residual stress also greatly affects the service life of a tool. In this study, variations in surface roughness, residual stress, and specimen deformation with the number of cold forging cycles were investigated under different forging conditions. Specimens that were made of heat-treated SKH51 (59–61 HRC), a high-speed tool steel with a polished working surface, were used. The specimens were subjected to an upsetting process. Compressive residual stress, surface roughness, and specimen deformation showed a positive relationship with the number of forging cycles up to a certain limit and became almost constant in most of the forging conditions. A larger change in residual stress and surface roughness was observed at the center of the specimens in all the forging conditions. The effect of the magnitude of the forging load on the above discussed parameters is large when compared to the effect of the lubrication conditions.


2006 ◽  
Vol 326-328 ◽  
pp. 1093-1096 ◽  
Author(s):  
Won Jo Park ◽  
Sun Chul Huh ◽  
Sung Ho Park

Small steel ball is utilized in Shot peening process. Called “shot ball” are shot in high speed on the surface of metal. When the shot ball hit the surface, it makes plastic deformation and bounce off, that increase the fatigue life by compressive residual stress on surface. In this study, the results of observation on the tensile strength, hardness, surface roughness, compressive residual stress and fatigue life of a shot peened Al6061-T651 were obtained. Experimental results show that arc height increase tremendously by shot velocity. Also, it shows that surface roughness, hardness, compressive residual stress and fatigue life increase as shot velocity increase.


2008 ◽  
Vol 47-50 ◽  
pp. 13-16 ◽  
Author(s):  
S.V. Joshi ◽  
S. Paul Vizhian ◽  
B.R. Sridhar ◽  
K. Jayaram

Machining parameters such as speed (v), feed (f) and depth of cut (d) play an important role in determining the residual stress as well as the surface roughness of a material. The material used for the present study is a nickel based super alloy Udiment 720 which finds applications in the manufacture of gas turbine engine components. Residual stress and surface roughness measured on this material showed different magnitudes for different combinations of milling parameters but did not reveal any definite trend. Analytical relationships developed between the magnitudes of residual stress, surface roughness and milling parameters indicated that combined effects of the milling parameters influence both residual stress and surface roughness.


Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1513
Author(s):  
Chuen-Lin Tien ◽  
Hong-Yi Lin ◽  
Kuan-Sheng Cheng ◽  
Chih-Kai Chang

We present a new laser protective lens based on a multilayered notch filter design with low residual stress and low surface roughness. An18-layer notch filter was prepared by electron beam evaporation with an ion-assisted deposition technique, which was composed of SiO2 and Nb2O5 with a center wavelength of 532 nm. The optical transmittance, residual stress, surface roughness, and surface morphology were measured by a UV/VIS/NIR spectrophotometer, Twyman–Green interferometer, scanning probe microscope, Linnik microscopic interferometer, and field-emission scanning electron microscopy (FE-SEM). The transmittance of the notch filters at center wavelength is 0.2%, and the average transmittance of the transmission band is about 70%. The residual stress of the notch filter is −0.298 GPa, and the root mean square surface roughness is 1.88 nm. The experimental results show that the optical transmittance meets the design requirements.


2021 ◽  
Vol 9 (4) ◽  
pp. 419
Author(s):  
Jin Gan ◽  
Zi’ang Gao ◽  
Yiwen Wang ◽  
Zhou Wang ◽  
Weiguo Wu

Ship hatch corner is a common structure in a ship and its fatigue problem has always been one of the focuses in ship engineering due to the long–term high–stress concentration state during the ship’s life. For investigating the fatigue life improvement of the ship hatch corner under different shot peening (SP) treatments, a series of fatigue tests, residual stress and surface topography measurements were conducted for SP specimens. Furthermore, the distributions of the surface residual stress are measured with varying numbers of cyclic loads, investigating the residual stress relaxation during cyclic loading. The results show that no matter which SP process parameters are used, the fatigue lives of the shot–peened ship hatch corner specimens are longer than those at unpeened specimens. The relaxation rate of the residual stress mainly depends on the maximum compressive residual stress (σRSmax) and the depth of the maximum compressive residual stress (δmax). The larger the values of σRSmax and δmax, the slower the relaxation rates of the residual stress field. The results imply that the effect of residual stress field and surface roughness should be considered comprehensively to improve the fatigue life of the ship hatch corner with SP treatment. The increase in peening intensity (PI) within a certain range can increase the depth of the compressive residual stress field (CRSF), so the fatigue performance of the ship hatch corner is improved. Once the PI exceeds a certain value, the surface damage caused by the increase in surface roughness will not be offset by the CRSF and the fatigue life cannot be improved optimally. This research provides an approach of fatigue performance enhancement for ship hatch corners in engineering application.


Sign in / Sign up

Export Citation Format

Share Document