Biocompatible magnetic N-rich activated carbon from egg white biomass and sucrose: Preparation, characterization and investigation of dye adsorption capacity from aqueous solution

2019 ◽  
Vol 15 ◽  
pp. 157-165 ◽  
Author(s):  
Saleh Vahdati-Khajeh ◽  
Maryam Zirak ◽  
Roghaye Zooghi Tejrag ◽  
Asra Fathi ◽  
Kamran Lamei ◽  
...  
2021 ◽  
Vol 10 (1) ◽  
pp. 59-66
Author(s):  
Son Le Lam ◽  
Phu Nguyen Vinh ◽  
Hieu Le Trung ◽  
Tan Le Thua ◽  
Nhan Dang Thi Thanh ◽  
...  

Glucomannan/graphene oxide (GM/GO) hydrogel was synthesized by using calcium hydroxide as the crosslinker. The synthesized material was characterized by using IR, XRD, SEM, EDX and RAMAN technology. The composite hydrogel was used for removal of organic dyes from aqueous solution. The results showed that the GM/GO hydrogel had a porous structure and a high adsorption capacity toward methylene blue (MB). The pseudo-second-order kinetic model could fit the rate equation of MB adsorption onto the GM/GO hydrogel. The adsorption of MB onto GM/GO hydrogel was a spontaneous process. In addition, the equilibrium adsorption isotherm data indicated that equilibrium data were fitted to the Langmuir isotherm and the maximum dye adsorption capacity was 198,69 mg.g-1. Moreover, the hydrogel was stable and easily recovered and adsorption capacity was around 97% of the initial saturation adsorption capacity after being used five times.


2000 ◽  
Vol 42 (5-6) ◽  
pp. 355-362 ◽  
Author(s):  
H. Pignon ◽  
C. Brasquet ◽  
P. Le Cloirec

The aim of this work is to evaluate the efficiency of Activated Carbon Cloths (ACCs) as a refining treatment of membrane filtration in the case of effluent streams containing both dyes and suspended solids (SS) or colloids responsible for turbidity. It is divided into two parts. First, dye adsorption experiments are carried out. Kinetics and isotherms enable us to show the feasibility of the adsorption and to study the influence of different operating conditions. The results demonstrate that adsorption is enhanced under acidic conditions, the adsorption capacity being increased by 40% in some cases. Moreover, microscopic characteristics of ACCs have a great influence on the adsorption process: there is a relationship between the adsorbent porosity and the adsorbate molecular weight, the mesoporous adsorbent being more efficious to remove the larger molecular weight dyes. In the case of low molecular weight compounds, the adsorbent with the higher specific surface area provides the greater adsorption capacity. Molecular connectivity indexes were used to confirm the correlation of the molecular structure of the adsorbates with their adsorbability. The second part consists of an estimation of the efficiency of the coupling of ultrafiltration and adsorption onto ACC. Tests performed on a laboratory-scale coupling show that a molecular weight cut-off of 3,000 D gives rise to a 98% removal of turbidity whereas dyes are not much retained. Furthermore, ultrafiltration is useful in improving the adsorption capacities of ACC in a continuous flow reactor (up to 50%).


2019 ◽  
Vol 26 (6) ◽  
pp. 6141-6152 ◽  
Author(s):  
Adriana I. Moral-Rodríguez ◽  
Roberto Leyva-Ramos ◽  
Conchi O. Ania ◽  
Raul Ocampo-Pérez ◽  
Elizabeth D. Isaacs-Páez ◽  
...  

2014 ◽  
Vol 1056 ◽  
pp. 134-137
Author(s):  
Wei Fang Dong ◽  
Li Hua Zang ◽  
Xin Pang

The absorbents including MnO2, fly ash, NaY zeolite and activated carbon powder were used to study the adsorption capacity of phenol. The effect of contact time and dosage of absorbents on the removal efficiency were investigated. The experimental results suggested that activated carbon powder is most effective absorbent, following as fly ash, MnO2 and NaY zeolite which the removal efficiency could reached 98.41%,77.65%, 60.19% and 24.13% at 90min respectively. The data indicated that the activated carbon powder was favorable for adsorption while NaY zeolite was unfit for absorbent of phenol from aqueous solution due to lower removal.


2013 ◽  
Vol 726-731 ◽  
pp. 1883-1889
Author(s):  
Brim Stevy Ondon ◽  
Bing Sun ◽  
Zhi Yu Yan ◽  
Xiao Mei Zhu ◽  
Hui Liu

Microwave energy was used to prepare modified activated carbons (GAC, GAC/MW, GAC/Ni, and GAC/Cu). The modified activated carbons were used for phenol adsorption in aqueous solution. The adsorption conditions were optimized. Adsorption capacities of the different modified activated carbons were evaluated. The effect of microwave pretreatment of activated carbons was investigated. A comparative study on the activated carbons adsorption capacities was also investigated. Under optimal conditions the results showed that there was no obvious effect on activated carbons adsorption when rising temperature and pH during the adsorption process. Stirring has a very high effect on the activated carbons adsorption capacity. The adsorption capacity of the modified activated carbons reaches 95%. MW/GAC, GAC/Ni and GAC/Cu adsorptive capacity was higher compared to the Granulated Activated Carbon (GAC) used as received. GAC treated with microwave energy has highest adsorption capacity. The adsorption capacity of GAC loaded with ion Ni2+ is higher than the activated carbon loaded with Cu2+. The untreated GAC has the lowest adsorption capacity. These results can be explained by the effect of microwave irradiation on GAC.The activated carbon loaded with Ni2+ adsorbs more microwave energy than the GAC loaded with Cu2+.


2018 ◽  
Vol 42 (17) ◽  
pp. 14612-14619 ◽  
Author(s):  
Cínthia Soares de Castro ◽  
Luísa Nagyidai Viau ◽  
Júlia Teixeira Andrade ◽  
Thais A. Prado Mendonça ◽  
Maraísa Gonçalves

Activated carbons of high mesoporosity were prepared from PET wastes and presented high adsorption capacity, including relatively large-molecule dyes.


2016 ◽  
Vol 74 (8) ◽  
pp. 1800-1808 ◽  
Author(s):  
Jianjun Liang ◽  
Meiling Liu ◽  
Yufei Zhang

Commercial pulverous activated carbon (AC-0) was modified through two steps: oxidize AC-0 acid firstly, impregnate it with iron using ferric chloride secondly. Orthogonal experiment was conducted then to prepare modified activated carbon with high Cd(II) adsorption capacity (ACNF). Batch adsorption experiments were undertaken to determine the adsorption characteristics of Cd(II) from aqueous solution onto AC-0 and ACNF and the effect of pH, contact time and initial Cd(II) concentration. The results indicate that: the adsorption behavior of Cd(II) on ACNF can be well fitted with Langmuir model, and the maximum adsorption capacity of ACNF was 2.3 times higher than that of AC-0, supporting a monolayer coverage of Cd(II) on the surface. The kinetics of the adsorption process can be described by pseudo-second-order rate equation very well, and the adsorption capacity increased from 0.810 mg/g to 0.960 mg/g after modification. Compared with AC-0, the kinetic parameters of ACNF showed a higher adsorption rate through the aqueous solution to the solid surface and a lower intraparticle diffusion rate. Surface modification resulted in a lower Brunauer–Emmett–Teller (BET) surface area and pore size because of the collapse and blockage of pores, according to the X-ray diffraction (XRD) analysis, while the total number of surface oxygen acid groups increased, and this was supposed to contribute to the enhanced adsorption capacity of modified activated carbon.


2013 ◽  
Vol 779-780 ◽  
pp. 1600-1606 ◽  
Author(s):  
Miao Jia ◽  
Ji Wei Hu ◽  
Jin Luo ◽  
Su Ming Duan ◽  
Zhi Bin Li ◽  
...  

Adsorption effects of three kinds of activated carbons and a type of machine-made charcoal on the removal of antimony from acidic aqueous solution were investigated and compared. With an initial antimony solution concentration of 1000 μgL-1, the antimony adsorption by selected adsorbents were found to descend in the following order: machine-made charcoal (52.4%) > coconut activated carbon (42.6%) > coal based activated carbon (31.1%) > apricot stone based activated carbon (24.6%). The machine-made charcoal has the best adsorption capacity with a maximum adsorption values of 523.76 μgL-1. Five kinetic models were used for the fitting of the process of antimony adsorption, including Elovich, parabola diffusion, second order, first order and double-constant. Results showed that parabola diffusion and double-constant rate equation were the most suitable models in describing the relationship of antimony adsorption with time in acidic aqueous solution, implying that the adsorption kinetics of the antimony by the selected adsorbents in water might be a surface diffusion. Three adsorptive capacity indicators (iodine number, methylene blue number and phenol number) were determined in this paper. However, machine-made charcoal, which has a relatively high adsorption capacity, is of the lowest levels of the adsorptive capacity indicators. Thus, some complex mechanisms might be involved for the antimony adsorption by the machine-made charcoal, consequently considering the mechanism for the adsorption of antimony by the charcoal has not been verified, a further study still needs to be done.


Sign in / Sign up

Export Citation Format

Share Document