Microwave Preparation of Modified Activated Carbons for Phenol Adsorption in Aqueous Solution

2013 ◽  
Vol 726-731 ◽  
pp. 1883-1889
Author(s):  
Brim Stevy Ondon ◽  
Bing Sun ◽  
Zhi Yu Yan ◽  
Xiao Mei Zhu ◽  
Hui Liu

Microwave energy was used to prepare modified activated carbons (GAC, GAC/MW, GAC/Ni, and GAC/Cu). The modified activated carbons were used for phenol adsorption in aqueous solution. The adsorption conditions were optimized. Adsorption capacities of the different modified activated carbons were evaluated. The effect of microwave pretreatment of activated carbons was investigated. A comparative study on the activated carbons adsorption capacities was also investigated. Under optimal conditions the results showed that there was no obvious effect on activated carbons adsorption when rising temperature and pH during the adsorption process. Stirring has a very high effect on the activated carbons adsorption capacity. The adsorption capacity of the modified activated carbons reaches 95%. MW/GAC, GAC/Ni and GAC/Cu adsorptive capacity was higher compared to the Granulated Activated Carbon (GAC) used as received. GAC treated with microwave energy has highest adsorption capacity. The adsorption capacity of GAC loaded with ion Ni2+ is higher than the activated carbon loaded with Cu2+. The untreated GAC has the lowest adsorption capacity. These results can be explained by the effect of microwave irradiation on GAC.The activated carbon loaded with Ni2+ adsorbs more microwave energy than the GAC loaded with Cu2+.

2013 ◽  
Vol 779-780 ◽  
pp. 1600-1606 ◽  
Author(s):  
Miao Jia ◽  
Ji Wei Hu ◽  
Jin Luo ◽  
Su Ming Duan ◽  
Zhi Bin Li ◽  
...  

Adsorption effects of three kinds of activated carbons and a type of machine-made charcoal on the removal of antimony from acidic aqueous solution were investigated and compared. With an initial antimony solution concentration of 1000 μgL-1, the antimony adsorption by selected adsorbents were found to descend in the following order: machine-made charcoal (52.4%) > coconut activated carbon (42.6%) > coal based activated carbon (31.1%) > apricot stone based activated carbon (24.6%). The machine-made charcoal has the best adsorption capacity with a maximum adsorption values of 523.76 μgL-1. Five kinetic models were used for the fitting of the process of antimony adsorption, including Elovich, parabola diffusion, second order, first order and double-constant. Results showed that parabola diffusion and double-constant rate equation were the most suitable models in describing the relationship of antimony adsorption with time in acidic aqueous solution, implying that the adsorption kinetics of the antimony by the selected adsorbents in water might be a surface diffusion. Three adsorptive capacity indicators (iodine number, methylene blue number and phenol number) were determined in this paper. However, machine-made charcoal, which has a relatively high adsorption capacity, is of the lowest levels of the adsorptive capacity indicators. Thus, some complex mechanisms might be involved for the antimony adsorption by the machine-made charcoal, consequently considering the mechanism for the adsorption of antimony by the charcoal has not been verified, a further study still needs to be done.


2008 ◽  
Vol 368-372 ◽  
pp. 1541-1544 ◽  
Author(s):  
Hua Lei Zhou ◽  
Dong Yan Li ◽  
Guo Zhuo Gong ◽  
Ya Jun Tian ◽  
Yun Fa Chen

Activated carbon was employed as the adsorption carrier for the metal ions in HCl solution of red mud, a solid waste produced in alumina industry. To improve the adsorption capacity to valuable metal ions, the activated carbon was modified by chemicals including HNO3, H2O2, H2SO4, H3PO4, NH3, Na2CO3, and tri-butyl phosphate (TBP). It was found that the modifications contributed the high adsorption capacity to almost all metal ions we focused on. In the case of TBP, remarkably higher adsorption capacity and selectivity of Sc3+ was observed. The correlation between the surface areas, IR spectra of those chemically modified activated carbons and adsorption was schemed.


2012 ◽  
Vol 9 (2) ◽  
pp. 938-948 ◽  
Author(s):  
Liliana Giraldo ◽  
Juan Carlos Moreno-Piraján

We obtain activated carbons with high portion of meso pores using coffee residues as precursor for the application of adsorption of large adsorbates. Because of its natural properties, the coffee residue exhibited a large pore size. In this work, the coffee residue were impregnated with ZnCl2and KOH, and then carbonized under the nitrogen conditions and activated with CO2respectively. Obtained activated carbons are used in the adsorption of ions Hg(II) and Zn(II). These adsorbents are efficacious to remove these ions from aqueous solution, with monocomponent equilibrium adsorption capacities ranging from from 0.002 to 0.380 mmol∙g-1for Hg on ACK3 and from 0.002 to 0.330 mmol∙g-1for ACZ3. For Zn(II) on ACK2 from 0.002 to 0.300 mmol∙g-1, and from 0.001 to 0.274 mmol∙g-1for ACZ2.


RSC Advances ◽  
2016 ◽  
Vol 6 (47) ◽  
pp. 40818-40827 ◽  
Author(s):  
Zizhang Guo ◽  
Jian Zhang ◽  
Hai Liu

This study shows that oxalic acid (OA) and succinic acid (SA) were employed to modify Phragmites australis (PA)-based activated carbons (ACs) during phosphoric acid activation to improve Rhodamine B (RhB) removal from aqueous solutions.


2014 ◽  
Vol 1056 ◽  
pp. 134-137
Author(s):  
Wei Fang Dong ◽  
Li Hua Zang ◽  
Xin Pang

The absorbents including MnO2, fly ash, NaY zeolite and activated carbon powder were used to study the adsorption capacity of phenol. The effect of contact time and dosage of absorbents on the removal efficiency were investigated. The experimental results suggested that activated carbon powder is most effective absorbent, following as fly ash, MnO2 and NaY zeolite which the removal efficiency could reached 98.41%,77.65%, 60.19% and 24.13% at 90min respectively. The data indicated that the activated carbon powder was favorable for adsorption while NaY zeolite was unfit for absorbent of phenol from aqueous solution due to lower removal.


2018 ◽  
Vol 42 (17) ◽  
pp. 14612-14619 ◽  
Author(s):  
Cínthia Soares de Castro ◽  
Luísa Nagyidai Viau ◽  
Júlia Teixeira Andrade ◽  
Thais A. Prado Mendonça ◽  
Maraísa Gonçalves

Activated carbons of high mesoporosity were prepared from PET wastes and presented high adsorption capacity, including relatively large-molecule dyes.


2016 ◽  
Vol 73 (11) ◽  
pp. 2654-2661 ◽  
Author(s):  
Shuxiong Tang ◽  
Yao Chen ◽  
Ruzhen Xie ◽  
Wenju Jiang ◽  
Yanxin Jiang

Operation experiments were conducted to optimize the preparation of activated carbons from corn cob. The Cr(VI) adsorption capacity of the produced activated carbons was also evaluated. The impact of the adsorbent dosage, contact time, initial solution pH and temperature was studied. The results showed that the produced corn cob activated carbon had a good Cr(VI) adsorptive capacity; the theoretical maximum adsorption was 34.48 mg g−1 at 298 K. The Brunauer–Emmett–Teller and iodine adsorption value of the produced activated carbon could be 924.9 m2 g−1 and 1,188 mg g−1, respectively. Under the initial Cr(VI) concentration of 10 mg L−1 and the original solution pH of 5.8, an adsorption equilibrium was reached after 4 h, and Cr(VI) removal rate was from 78.9 to 100% with an adsorbent's dosage increased from 0.5 to 0.7 g L−1. The kinetics and equilibrium data agreed well with the pseudo-second-order kinetics model and the Langmuir isotherm model. The equilibrium adsorption capacity improved with the increment of the temperature.


2020 ◽  
Vol 10 (7) ◽  
pp. 676
Author(s):  
Huu Son Ta ◽  
Khu Le Van ◽  
Thu Thuy Luong Thi ◽  
Thanh Hoa Ha

The kinetics of phenol adsorption from aqueous solution on activated carbons (ACs) obtained from coffee husk by potassium Hydroxide (KOH) activation at 650 and 750<sup>o</sup>C have been studied in the range of     100-250 mg L<sup>-1</sup> initial phenol concentrations and at the temperatures range of 10 – 40<sup>o</sup>C. Kinetic models for phenol adsorption were evaluated using pseudo-first-order, pseudo-second-order, and Elovich models. The adsorption mechanism was investigated using Reichenberg, Boyd, and Weber and Morris models. The adsorption on coffee husk activated carbon was found to be a fast or speedy process with the adsorption rate, k<sub>2</sub>q<sub>e</sub>, in the range of 0.130 to 0.977 min<sup>-1</sup>. The adsorption process was mainly physical and promoted by chemical sorption and controlled not only by intra-particle diffusion but also by pore diffusion throughout the entire adsorption period.


2011 ◽  
Vol 64 (10) ◽  
pp. 2059-2065 ◽  
Author(s):  
Cínthia S. Castro ◽  
Anelise L. Abreu ◽  
Carmen L. T. Silva ◽  
Mário C. Guerreiro

The present work highlights the preparation of activated carbons (ACs) using spent coffee grounds, an agricultural residue, as carbon precursor and two different activating agents: water vapor (ACW) and K2CO3 (ACK). These ACs presented the microporous nature and high surface area (620–950 m2 g−1). The carbons, as well as a commercial activated carbon (CAC) used as reference, were evaluated as phenol adsorbent showing high adsorption capacity (≈150 mg g−1). The investigation of the pH solution in the phenol adsorption was also performed. The different activating agents led to AC with distinct morphological properties, surface area and chemical composition, although similar phenol adsorption capacity was verified for both prepared carbons. The production of activated carbons from spent coffee grounds resulted in promising adsorbents for phenol removal while giving a noble destination to the residue.


2013 ◽  
Vol 743-744 ◽  
pp. 545-550 ◽  
Author(s):  
Juan Liu ◽  
Hui Ping Fan ◽  
Guo Zhuo Gong ◽  
Qiang Xie

Four kinds of commercial activated carbons were soaked in sodium hydroxide after modification with 10% nitric acid. Nickel adsorption isotherms for modified activated carbons before and after sodium hydroxide treatment were tested. The surface groups were characterized by the Fourier transform infrared spectroscopy and Boehm titration, the adsorption properties were determined by the iodine number and methylene blue number, the pHIEP were deduced by the Zeta potential analyzer. The results showed that nitric acid blocks the pore, while enhances the content of acid groups, especially carboxyl resulting in the decrease of nickel adsorption capacity. After sodium hydroxide treatment, the nickel capacity of activated carbon from anthracite, long flame coal, lignite and coconut increased by 21.5%, 116%, 78.9%, 89.1% comparing with the virgin activated carbon, respectively. The overall research indicated that nickel ion adsorption capacity of activated carbon can be improved only when the acid groups are transferred into anion, and the modification is more effective on the activated carbon prepared by low metamorphic grade coal.


Sign in / Sign up

Export Citation Format

Share Document