scholarly journals Study on the adsorption of methylene blue from aqueous solution using hydrogel glucomannan/graphene oxide

2021 ◽  
Vol 10 (1) ◽  
pp. 59-66
Author(s):  
Son Le Lam ◽  
Phu Nguyen Vinh ◽  
Hieu Le Trung ◽  
Tan Le Thua ◽  
Nhan Dang Thi Thanh ◽  
...  

Glucomannan/graphene oxide (GM/GO) hydrogel was synthesized by using calcium hydroxide as the crosslinker. The synthesized material was characterized by using IR, XRD, SEM, EDX and RAMAN technology. The composite hydrogel was used for removal of organic dyes from aqueous solution. The results showed that the GM/GO hydrogel had a porous structure and a high adsorption capacity toward methylene blue (MB). The pseudo-second-order kinetic model could fit the rate equation of MB adsorption onto the GM/GO hydrogel. The adsorption of MB onto GM/GO hydrogel was a spontaneous process. In addition, the equilibrium adsorption isotherm data indicated that equilibrium data were fitted to the Langmuir isotherm and the maximum dye adsorption capacity was 198,69 mg.g-1. Moreover, the hydrogel was stable and easily recovered and adsorption capacity was around 97% of the initial saturation adsorption capacity after being used five times.

2013 ◽  
Vol 361-363 ◽  
pp. 760-763 ◽  
Author(s):  
Wei Fang Dong ◽  
Li Hua Zang ◽  
Hao Li

The adsorption capacity was compared for the dye wastewater onto adsorbent MnO2. The effects of contact time and dosage of adsorbent were studied. The adsorption kinetics was analyzed. The results showed that MnO2 possessed higher adsorption capacity to Methylene blue than Methyl orange which the removal efficiency could reached 94.82%and 78.63% respectively under the conditions (the dosage1.2g/L, time 60min, initial dye concentration 50mg/L, pH7). The dynamical data fit well with the pseudo second order kinetic model. The MnO2 has higher Methylene blue adsorption capacity in short equilibrium times and are good alternative in wastewater treatment.


2013 ◽  
Vol 295-298 ◽  
pp. 1154-1160 ◽  
Author(s):  
Guo Zhi Deng ◽  
Xue Yuan Wang ◽  
Xian Yang Shi ◽  
Qian Qian Hong

The objective of this paper is to investigate the feasibility of phenol adsorption from aqueous solution by Pinus massoniana biochar. Adsorption conditions, including contact time, initial phenol concentration, adsorbent dosage, strength of salt ions and pH, have been investigated by batch experiments. Equilibrium can be reached in 24 h for phenol from 50 to 250 mg• L-1. The optimum pH value for this kind of biochar is 5.0. The amount of phenol adsorbed per unit decreases with the increase in adsorbent dosage. The existence of salt ions makes negligible influence on the equilibrium adsorption capacity. The experimental data is analyzed by the Freundlich and Langmuir isotherm models. Equilibrium data fits well to the Freundlich model. Adsorption kinetics models are deduced and the pseudo-second-order kinetic model provides a good correlation for the adsorbent process. The results show that the Pinus massoniana biochar can be utilized as an effective adsorption material for the removal of phenol from aqueous solution.


2019 ◽  
Vol 19 (11) ◽  
pp. 7035-7043 ◽  
Author(s):  
Tong Ouyang ◽  
Jidan Tang ◽  
Fang Liu ◽  
Chang-Tang Chang

The objective of this paper is to study the removal of Cr(VI) in aqueous solution by using a new graphene oxide-coated rice husk biochar composite (GO-RHB). GO-RHB is a synthetic material having a porous structure with lots of oxygen-containing functional groups and a large surface area that provide effective adsorption sites. Experiments showed that GO-RHB had higher adsorption capacity under acidic than under alkaline conditions. At pH of 2, GO-RHB has the maximum adsorption capacity(48.8 mg g−1). Equilibrium data obtained by fitting with the Langmuir and Freundlich models indicate that the reaction process was monolayer adsorption. The adsorption of Cr(VI) followed the pseudo-second-order kinetic model that illustrates chemical adsorption. Intraparticlediffusion studies further revealed that film diffusion was taking place. Moreover, the results of thermodynamics showed that the adsorption process was endothermic and spontaneous in nature. The removal mechanism of Cr(VI) was also explained in detail. The prepared adsorbent is highly efficient and might be useful than many other conventional adsorbent used for the removal of Cr(VI) from wastewater.


2015 ◽  
Vol 71 (11) ◽  
pp. 1611-1619 ◽  
Author(s):  
Jun Liu ◽  
Hongyan Du ◽  
Shaowei Yuan ◽  
Wanxia He ◽  
Pengju Yan ◽  
...  

Alkaline deoxygenated graphene oxide (aGO) was prepared through alkaline hydrothermal treatment and used as adsorbent to remove Cd(II) ions from aqueous solutions for the first time. The characterization results of transmission electron microscopy, X-ray diffraction, Raman spectroscopy, and Fourier transform infrared (FT-IR) spectra indicate that aGO was successfully synthesized. The batch adsorption experiments showed that the adsorption kinetics could be described by the pseudo-second-order kinetic model, and the isotherms equilibrium data were well fitted with the Langmuir model. The maximum adsorption capacity of Cd(II) on aGO was 156 mg/g at pH 5 and T = 293 K. The adsorption thermodynamic parameters indicated that the adsorption process was a spontaneous and endothermic reaction. The mainly adsorption mechanism speculated from FT-IR results may be attributed to the electrostatic attraction between Cd2+ and negatively charged groups (–CO−) of aGO and cation-π interaction between Cd2+ and the graphene planes. The findings of this study demonstrate the potential utility of the nanomaterial aGO as an effective adsorbent for Cd(II) removal from aqueous solutions.


2013 ◽  
Vol 9 (1) ◽  
pp. 1822-1836
Author(s):  
Keon Sang Ryoo ◽  
Jong-Ha Choi ◽  
Yong Pyo Hong

The present study is to explore the possibility of utilizing granular activated charcoal (GAC) for the removal of total phosphorous (T-P) and total nitrogen (T-N) in aqueous solution. Batch adsorption studies were carried out to determine the influences of various factors like initial concentration, contact time and temperature. The adsorption data showed that GAC has a similar adsorption capacity for both T-N and T-P. The adsorption degree of T-N and T-P on GAC was highly concentration dependent. It was found that the adsorption capacity of GAC is quite favorable at a low concentration. At concentrations of 1.0 mg L-1 of T-P and 2.0 mg L-1 of T-N, approximately 97 % of adsorption was achieved by GAC. The equilibrium data were fitted well to the Langmuir isotherm model. The pseudo-second-order kinetic model appeared to be the better-fitting model because it has higher R2 compared with the pseudo-first-order and intra-particle kinetic model. The theoretical adsorption equilibrium qe,cal from pseudo-second-order kinetic model were relatively similar to the experimental adsorption equilibrium qe,exp. To evaluate the effect of thermodynamic parameters at different temperatures, the change in free energy ΔG, the enthalpy ΔH and the entropy ΔS were estimated. Except for adsorption of T-P at 278 K, the ΔG values obtained were all negative at the investigated temperatures. It indicates that the present adsorption system occurs spontaneously. The adsorption process of T-N by GAC was exothermic in nature, whereas T-P showed endothermic behavior. In addition, the positive values of ΔS imply that there was the increase in the randomness of adsorption of T-N and T-P at GAC-solution interface.  


Author(s):  
Ernesto Jr. S. Cajucom ◽  
◽  
Lolibeth V. Figueroa ◽  

This study was carried out to investigate the efficiency of raw pili shell (RPS) and the surface modified pili shell using EDTA (EMPS) and oxalic acid (OMPS). A comparative study on the adsorption capacity of the adsorbents was performed against lead (Pb2+) from aqueous solution. The adsorbents were characterized by FTIR, which showed higher peak of adsorption bands of carboxylic groups on the acid modified pili shells. Scanning electron microscope orSEM was also used to describe the surface morphology of the adsorbents. The linear form of Langmuir and Freundlich models were applied to represent adsorption data. The calculated equilibrium data of Pb (II) best fitted to Langmuir compare to Freundlich isotherm model with maximum adsorption capacity (qmax) of 27.03 mg/g and 45.45 mg/g using EMPS and OMPS, respectively. Kinetic sorption models were used to determine the adsorption mechanism and the kinetic data of all the adsorbents correlated (R2=1) wellwith the pseudo second order kinetic model. Among the three adsorbents, OMPS shown higher percent removal of lead compared to RPS and EMPS. The large adsorption capacity rate indicated that chemically modified pili shell in present study has great potential to be used as a cost-effective adsorbent for the removal of lead ions from the water.


2019 ◽  
Vol 62 (3) ◽  
Author(s):  
Naereh Besharati ◽  
Nina Alizadeh ◽  
Shahab Shariati

Abstract. This study was focused on the adsorption of methylene blue (MB) as a cationic dye on magnetite nanoparticles loaded with coffee (MNLC) and magnetite nanoparticles loaded with peanut husk (MNLPH) as naturally cheap sources of adsorbent. Coffee and Peanut husk were magnetically modified by contact with water-based magnetic fluid. These new type of magnetically natural materials can be easily separated by means of magnetic separators. They were characterized with Fourier transform infrared spectroscopy (FT-IR), powder X-ray diffraction (XRD) and scanning electron microscopy (SEM) instruments. Different parameters affecting MB removal efficiency such as contact time, pH of solution and amount of adsorbents were studied and optimized. Dye adsorption process was studied from both kinetic and equilibrium point. The studies of MB sorption kinetic showed rapid dynamic sorption with second-order kinetic model, suggesting chemisorption mechanism with R2 = 0.9988, qeq=10.28 mg g-1 and R2=0.9967, qeq=128.20 mg g-1, respectively. Equilibrium data were fitted well to the Langmuir isotherm more than Freundlich and Temkin isotherm. The modified adsorbents showed MB removal with 88.49 and 74.62 mg g-1 sorption capacity for MNLC and MNLPH, respectively. This study showed a simple, efficient and reliable method for removal of MB from aqueous solutions with MNLC and MNLPH as efficient adsorbents. Resumen. Este estudio se centró en la adsorción de azul de metileno (MB) como un colorante catiónico en nanopartículas de magnetita cargadas con café (MNLC) y nanopartículas de magnetita cargadas con cáscara de cacahuete (MNLPH) como fuentes de adsorbente naturalmente económicas. El café y la cáscara de maní se modificaron magnéticamente por contacto con un fluido magnético a base de agua. Este nuevo tipo de materiales magnéticamente naturales se puede separar fácilmente mediante separadores magnéticos. Se caracterizaron con espectroscopia infrarroja de transformada de Fourier (FT-IR), difracción de rayos X en polvo (DRX) y microscopía electrónica de barrido (SEM). Se estudiaron y optimizaron diferentes parámetros que afectan la eficiencia de eliminación de MB, como el tiempo de contacto, el pH de la solución y la cantidad de adsorbentes. Se estudió el proceso de adsorción de tinte desde el punto de equilibrio y cinético. Los estudios de cinética de absorción de MB mostraron una absorción dinámica rápida con un modelo cinético de segundo orden, lo que sugiere un mecanismo de quimiosorción con R2= 0.9988, qeq= 10.28 mg g-1 y R2= 0.9967, qeq= 128.20 mg g-1, respectivamente. Los datos de equilibrio se ajustaron bien a la isoterma de Langmuir más que a la isoterma de Freundlich y Temkin. Los adsorbentes modificados mostraron eliminación de MB con 88.49 y 74.62 mg g-1 de capacidad de absorción para MNLC y MNLPH, respectivamente. Este estudio mostró un método simple, eficiente y confiable para la eliminación de MB de soluciones acuosas con MNLC y MNLPH como adsorbentes eficientes.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Giannin Mosoarca ◽  
Cosmin Vancea ◽  
Simona Popa ◽  
Marius Gheju ◽  
Sorina Boran

Abstract In this study, the potential of a new low-cost adsorbent, Syringa vulgaris leaves powder, for methylene blue adsorption from aqueous solution was investigated. The adsorbent surface was examined using SEM and FTIR techniques. The experiments were conducted, in batch system, to find out the effect of pH, contact time, adsorbent dose, initial dye concentration, temperature and ionic strength on dye adsorption. The process is best described by Langmuir isotherm and the pseudo second order kinetic model. Maximum adsorption capacity, 188.2 (mg g−1), is better than other similar adsorbent materials. Thermodynamic parameters revealed a spontaneous and endothermic process, suggesting a physisorption mechanism. A Taguchi orthogonal array (L27) experimental design was used to determine the optimum conditions for the removal of dye. Various desorbing agents were used to investigate the regeneration possibility of used adsorbent. Results suggest that the adsorbent material is very effective for removal of methylene blue from aqueous solutions.


2012 ◽  
Vol 446-449 ◽  
pp. 2960-2963
Author(s):  
Jing Yan Song ◽  
Jing Yang

The adsorption properties of the attapulgite and the rectorite were investigated by removal of a cationic dye, methylene blue (MB) from aqueous solution. The attapulgite and the rectorite were characterized by Fourier transform infrared (FT-IR) spectroscopy, Brunauer-Emmett-Teller (BET) and scanning electron microscopy (SEM). The analysis of the isotherm equilibrium data using the Langmuir and Freundlich equations showed that the data fitted better with Langmuir model. Pseudo-first-order and pseudo-second-order models were considered to evaluate the rate parameters. The experimental data were well described by the pseudo-second-order kinetic model. The results indicate that the attapulgite exhibited higher adsorption capacity for MB than rectorite and could be employed as a low-cost alternative in wastewater treatment for the removal of cationic dyes.


2017 ◽  
Vol 8 (2) ◽  
pp. 214-224 ◽  
Author(s):  
M. Farnane ◽  
H. Tounsadi ◽  
A. Machrouhi ◽  
A. Elhalil ◽  
F. Z. Mahjoubi ◽  
...  

AbstractThe focus of this study is the investigation of removal ability of methylene blue (MB) and malachite green (MG) dyes from aqueous solution by raw maize corncob (RMC) and H3PO4 activated maize corncob (AMC). Maize corncobs were carbonized at 500 °C for 2 h, and then impregnated at a phosphoric acid to maize corncob ratio of 2.5 g/g. The impregnated maize corncob was activated in a tubular vertical furnace at 450 °C for 2 h. Samples were characterized by different methods. Adsorption experiments were carried out as a function of solution pH, adsorbent dosage, contact time, initial concentration of dyes and the temperature. Experimental results show that the activation of maize corncob boosts four times the adsorption performance for the selected dyes. The adsorption process is very rapid and was pH dependent with high adsorption capacities in the basic range. The kinetic data were fitted with the pseudo-second-order kinetic model. The best fit of equilibrium data was obtained by the Langmuir model with maximum monolayer adsorption capacities of 75.27 and 271.19 mg/g for MB, 76.42 and 313.63 mg/g for MG, respectively, in the case of RMC and AMC. The temperature did not have much influence on the adsorption performance.


Sign in / Sign up

Export Citation Format

Share Document