High performance encapsulation of transparent conductive polymers by spatial atomic layer deposition

2022 ◽  
Vol 284 ◽  
pp. 116995
Author(s):  
Amélie Schultheiss ◽  
Abderrahime Sekkatz ◽  
Viet Huong Nguyen ◽  
Alexandre Carella ◽  
Anass Benayad ◽  
...  
2015 ◽  
Vol 764-765 ◽  
pp. 138-142 ◽  
Author(s):  
Fa Ta Tsai ◽  
Hsi Ting Hou ◽  
Ching Kong Chao ◽  
Rwei Ching Chang

This work characterizes the mechanical and opto-electric properties of Aluminum-doped zinc oxide (AZO) thin films deposited by atomic layer deposition (ALD), where various depositing temperature, 100, 125, 150, 175, and 200 °C are considered. The transmittance, microstructure, electric resistivity, adhesion, hardness, and Young’s modulus of the deposited thin films are tested by using spectrophotometer, X-ray diffraction, Hall effect analyzer, micro scratch, and nanoindentation, respectively. The results show that the AZO thin film deposited at 200 °C behaves the best electric properties, where its resistance, Carrier Concentration and mobility reach 4.3×10-4 Ωcm, 2.4×1020 cm-3, and 60.4 cm2V-1s-1, respectively. Furthermore, microstructure of the AZO films deposited by ALD is much better than those deposited by sputtering.


2012 ◽  
Vol 24 (7) ◽  
pp. 1255-1261 ◽  
Author(s):  
Xinyi Chen ◽  
Ekaterina Pomerantseva ◽  
Parag Banerjee ◽  
Keith Gregorczyk ◽  
Reza Ghodssi ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Linxing Meng ◽  
Jinlu He ◽  
Xiaolong Zhou ◽  
Kaimo Deng ◽  
Weiwei Xu ◽  
...  

AbstractVast bulk recombination of photo-generated carriers and sluggish surface oxygen evolution reaction (OER) kinetics severely hinder the development of photoelectrochemical water splitting. Herein, through constructing a vertically ordered ZnInS nanosheet array with an interior gradient energy band as photoanode, the bulk recombination of photogenerated carriers decreases greatly. We use the atomic layer deposition technology to introduce Fe-In-S clusters into the surface of photoanode. First-principles calculations and comprehensive characterizations indicate that these clusters effectively lower the electrochemical reaction barrier on the photoanode surface and promote the surface OER reaction kinetics through precisely affecting the second and third steps (forming processes of O* and OOH*) of the four-electron reaction. As a result, the optimal photoanode exhibits the high performance with a significantly enhanced photocurrent of 5.35 mA cm−2 at 1.23 VRHE and onset potential of 0.09 VRHE. Present results demonstrate a robust platform for controllable surface modification, nanofabrication, and carrier transport.


Sign in / Sign up

Export Citation Format

Share Document