Role of AMPK in the expression of tight junction proteins in heat-treated porcine Sertoli cells

2018 ◽  
Vol 121 ◽  
pp. 42-52 ◽  
Author(s):  
Wei-Rong Yang ◽  
Ting-Ting Liao ◽  
Zi-Qiang Bao ◽  
Cai-Quan Zhou ◽  
Hong-Yan Luo ◽  
...  
2014 ◽  
Vol 11 (3) ◽  
pp. 47-52
Author(s):  
A N KHLEBNIKOVA

Epidermal barrier insufficiency results in skin dryness and fissures in different chronic dermatoses. Barrier dysfunction is due either to genetic problems or lipid deficiency or damage of tight junction proteins. Here we discuss various abnormalities of epidermal barrier in eczema and psoriasis which necessitate to prescribe pro- tective and moisturizing agents to restore skin barrier. We give our own practice data of using Bariederm cream and balm in combined therapy of dyshidrotic eczema, plantar eczema and palmoplantar psoriasis.


2021 ◽  
Vol 8 ◽  
Author(s):  
Junrui Cheng ◽  
Emilio Balbuena ◽  
Baxter Miller ◽  
Abdulkerim Eroglu

Background: Carotenoids are naturally occurring pigments accounting for the brilliant colors of fruits and vegetables. They may display antioxidant and anti-inflammatory properties in humans besides being precursors to vitamin A. There is a gap of knowledge in examining their role within colonic epithelial cells. We proposed to address this research gap by examining the effects of a major dietary carotenoid, β-carotene, in the in vitro epithelial cell model.Methods: We examined the function of β-carotene in the lipopolysaccharide (LPS)/toll-like receptor 4 (TLR4) signaling pathway. We conducted western blotting assays to evaluate expressions of TLR4 and its co-receptor, CD14. We also examined NF-κB p65 subunit protein levels in the model system. Furthermore, we studied the impact of β-carotene on the tight junction proteins, claudin-1, and occludin. We further carried out immunocytochemistry experiments to detect and visualize claudin-1 expression.Results: β-Carotene reduced LPS-induced intestinal inflammation in colonic epithelial cells. β-Carotene also promoted the levels of tight junction proteins, which might lead to enhanced barrier function.Conclusions: β-Carotene could play a role in modulating the LPS-induced TLR4 signaling pathway and in enhancing tight junction proteins. The findings will shed light on the role of β-carotene in colonic inflammation and also potentially in metabolic disorders since higher levels of LPS might induce features of metabolic diseases.


Author(s):  
Guillermo Tellez Jr. ◽  
◽  
Guillermo Tellez-Isaias ◽  
Sami Dridi ◽  
◽  
...  

2005 ◽  
Vol 17 (9) ◽  
pp. 133
Author(s):  
G. A. Tarulli ◽  
P. G. Stanton ◽  
S. J. Meachem

Sperm production relies on nutritional and structural support from Sertoli cells. Sertoli cells undergo maturational changes (e.g. cessation of proliferation and formation of the blood–testis barrier) around the onset of puberty in higher mammals1 and maturational failure has been associated with some infertility syndromes and testicular malignancies2. The Sertoli cell population is considered to be stable and unmodifiable by hormones after puberty in mammals, although recent data using the adult Djungarian hamster showed that Sertoli cell numbers decreased by 35% in the absence of serum gonadotrophins, and returned to control levels by short-term replacement of follicle stimulating hormone (FSH)3. Therefore, the aims of this study were to (i) quantify the proliferative activity of Sertoli cells in the hormonally manipulated Djungarian hamster, and (ii) examine the localisation of several tight junction proteins as markers of the blood–testis barrier. Long day (LD) photoperiod (16L : 8D) adult hamsters were exposed to short day (SD) photoperiod (8L : 16D) for 11 weeks to suppress gonadotrophins and then received FSH for up to 10 days. Sertoli cell proliferation was assessed immunohistochemically by the colocalisation of GATA-4 and PCNA, and quantified by stereology. Tight junction proteins (occludin and ZO-1) were colocalised using confocal microscopy. Sertoli cell proliferation in both the LD and SD controls was minimal; however, in response to FSH treatment proliferation was upregulated within 4 days compared with SD controls (98% v. 2%, P < 0.001, respectively). Tight junction proteins colocalised at the blood–testis barrier in LD hamsters, but were disorganised within the Sertoli cell cytoplasm in SD animals. FSH treatment restores colocalisation in a time-dependent manner. It is concluded that FSH contributes to the regulation of Sertoli cell proliferation and tight junction formation in the adult Djungarian hamster. This data provides definitive evidence that the adult Sertoli cell population in this model is modifiable by hormones. (1)Meachem et al. (2005). Biol Reprod 72, 1187.(2)Allan et al. (2004). Endocrinol 145, 1587.(3)Russell and Peterson (1985). Int Rev Cytol 94, 177.


2012 ◽  
Vol 12 (1) ◽  
Author(s):  
Klaus Mönkemüller ◽  
Thomas Wex ◽  
Doerthe Kuester ◽  
Lucia C Fry ◽  
Arne Kandulski ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document