Follicular fluid during individual oocyte maturation enhances cumulus expansion and improves embryo development and quality in a dose-specific manner

2021 ◽  
Vol 166 ◽  
pp. 38-45
Author(s):  
Nima Azari-Dolatabad ◽  
Annelies Raes ◽  
Krishna Chaitanya Pavani ◽  
Anise Asaadi ◽  
Daniel Angel-Velez ◽  
...  
2011 ◽  
Vol 23 (1) ◽  
pp. 236 ◽  
Author(s):  
K. Zhang ◽  
P. J. Hansen ◽  
A. D. Ealy

Oocyte competency is acquired during the course of folliculogenesis and is controlled by various endocrine and paracrine signals. One of these is fibroblast growth factor 2 (FGF2). Its expression is up-regulated in theca and granulosa cells during final maturation of a bovine follicle, and its cognate receptors are expressed in cumulus cells and oocytes throughout the final stages of oocyte maturation. The overall goal of this work was to describe how supplementing FGF2 during oocyte maturation in vitro affects oocyte maturation and subsequent embryo development. Cumulus–oocyte complexes (COC) were collected from bovine ovaries obtained from a local abattoir and cultured in defined TCM-based oocyte maturation medium. Depending on the study, oocytes were examined either during (6 h) or after (21 h) maturation or were fertilized in vitro and examined throughout in vitro embryo development in modified SOFF. Data were analysed with least-squares ANOVA using GLM of SAS. Adding 0.5 to 50 ng mL–1 of FGF2 did not affect cleavage rate or the percentage of 8 to 16 cell embryos at day 3 post-IVF. However, the blastocyst rate at day 7 was greater when oocytes were exposed to 0.5 ng mL–1 of FGF2 during maturation [30.0 ± 1.9% (17/109) v. 16.0 ± 2.6% (23/77) for nontreatment control; 4 replicates; P < 0.05], whereas higher doses of FGF2 did not affect blastocyst rates when compared with controls. Total cell number per blastocyst was not affected by FGF2 addition. The effects of FGF2 on oocyte maturation and cumulus expansion were examined to better understand how FGF2 improves oocyte competency. Adding 0.5 ng mL–1 of FGF2 did not affect the percentage of oocytes containing condensed chromatin after 6 h IVM or metaphase II (MII) rate after 21 h IVM, but 0.5 ng mL–1 of FGF2 treatment increased the cumulus expansion index score after 21 h IVM (P < 0.05). Interestingly, adding 5 ng mL–1 but not 50 ng mL–1 of FGF2 increased MII rate [61.5 ± 4.3% (53/120) for 5 ng mL–1 of FGF2 v. 46.9 ± 5.9% (64/104) for nontreatment controls; 7 replicates; P < 0.05], but neither FGF2 affected rates of chromatin condensation and cumulus expansion. Changes in the relative abundance for several putative oocyte competency markers and maternal genes (CTSB, Sprouty2, EGFR, FSHR, Has2, BMP15, GDF9, JY-1, Follistatin, H2A) were examined at 6 and 21 h after treatment with 0.5 ng mL–1 of FGF2 by quantitative RT-PCR. Relative amounts of 18S RNA was used as an internal control, and 2-ΔΔCT was used to quantify relative gene expression. The relative abundance of most of the transcripts examined was not affected by FGF2, but EGFR mRNA levels were greater after 6 h but not 21 h IVM in cumulus cells isolated from FGF2-supplemented COC (P = 0.057). In summary, improvements in blastocyst development were achieved by FGF2 treatment during oocyte maturation. The reason for the enhanced oocyte competency remains unclear, but it may occur in part because of improvements in cumulus expansion and production of EGFR. This project was supported by NRICGP number 2008-35203-19106 from the USDA-NIFA.


Author(s):  
A.A. Mohammed ◽  
T. Al-Shaheen ◽  
S. Al-Suwaiegh

Oocytes are bathed in extracellular fluid of the antral follicles, which is termed follicular fluid (FF). Follicular fluid is synthesized from secretions of theca, granulosa, and cumulus cells and from a transudate of blood plasma. Oocytes persist in meiotic arrest in antral follicles until luteinizing hormone (LH) surge or removal the oocytes from the ovarian follicles. This suggests that FF before LH surge might contain meiosis inhibiting factor(s). The microvasculatory bed of the follicular wall and the composition of FF undergo changes during follicular growth and development, which is important for oocyte maturation and subsequent embryo development. Therefore, it is expected that FF composition and components might change according to timing of FF aspiration from follicles. Hence, negative or positive effects could be expected when FF supplemented during oocyte maturation in vitro. Nutrition effects on microvasculatory bed of follicles and their sizes. Thus, the nutritional status of animals is a factor affected on oocyte maturation and embryo development. The present article reviews and discusses these effects.


2012 ◽  
Vol 24 (1) ◽  
pp. 208
Author(s):  
J. Mao ◽  
K. M. Whitworth ◽  
L. D. Spate ◽  
E. M. Walters ◽  
J. Zhao ◽  
...  

Mitochondria supply the majority of ATP in a cell. Mitochondrial DNA (mtDNA) copy number in oocytes might be used as a marker of viability and might be a key determinant of pre-implantation embryo development. However, little is known about mtDNA copy number changes during porcine oocyte maturation and its regulation by extracellular growth factors. The objectives of the current study were to determine the effects of supplementation of in vitro maturation medium with porcine follicular fluid (pFF; 0, 10, 20 and 30%), epidermal growth factor (EGF; 10 ng mL–1), neuregulin 1 (NRG; 20 ng mL–1) and NRG + IGF1 (insulin-like growth factor-1; 100 ng mL–1 + NRG, 20 ng mL–1) during in vitro maturation on mtDNA copy number, oocyte meiotic maturation and subsequent embryo development after parthenogenic activation. Follicular fluid used for the pFF supplementation experiment was prepared from medium-sized (3–6 mm in diameter) healthy follicles. Cumulus–oocyte complexes (COCs) were collected from antral follicles (3–6 mm in diameter), cultured in LH- and FSH-containing maturation medium for 22 h at 38.5°C, transferred into basic maturation medium without FSH and LH and cultured for another 22 h. The basic maturation medium was TCM-199 supplemented with 0.1% polyvinylalcohol (w/v), 3.05 mM D-glucose, 0.91 mM sodium pyruvate, 10 μg mL–1 of gentamicin, 0.57 mM cysteine and without or with different growth factors depending on the experimental design. In total, 177 germinal vesicle (GV) oocytes and 3837 MII oocytes were used for this study. All data were analyzed by the general linear model (GLM) procedure of SAS software (V9.2). The mtDNA copy number in oocytes increased (P < 0.05) from GV to MII stage oocytes (MII oocytes from all treatment groups pooled). Supplementation of IVM media with 10% pFF decreased mtDNA copy number (P < 0.05), whereas 20 and 30% pFF had no major effect on mtDNA copy number, resulting in a quadratic correlation between percentage of pFF and mtDNA copy number. There was a negative linear correlation between percentage of pFF and oocyte meiotic maturation, with a higher percentage of pFF inhibiting meiotic maturation (73.2 ± 5.2, 71.9 ± 4.8, 64.1 ± 8.5 and 65.8 ± 6.4% for 0, 10, 20 and 30% pFF groups, respectively). The mtDNA copy numbers in EGF and NRG-treated MII oocytes were significantly higher than those in GV oocytes, whereas the control was not different (EGF, 237 042.6 ± 22 198.2; NRG, 281 293.4 ± 22 893.5; and control, 231 856.8 ± 21 883.5 in MII oocytes vs 192 288.7 ± 21 675.4 in GV oocytes). The EGF, NRG and NRG+IGF1 treatments enhanced oocyte maturation as well. There was no difference in Day-7 blastocyst formation between EGF, NRG+IGF1 and the control, whereas the NRG treatment enhanced blastocyst formation as compared to the control (23.8 ± 2.4 vs 15.1 ± 2.1%; P < 0.05). This study demonstrated that there was an increase in mtDNA copy number during in vitro maturation. The EGF and NRG treatments stimulated mitochondria biogenesis, which may provide new means to increase oocyte quality and enhance embryonic development.


2012 ◽  
Vol 24 (5) ◽  
pp. 743 ◽  
Author(s):  
Tamás Somfai ◽  
Yasushi Inaba ◽  
Shinya Watanabe ◽  
Masaya Geshi ◽  
Takashi Nagai

The aim of this study was to examine the effects of bovine follicular fluid (bFF) on mitochondrial activity in in vitro-matured (IVM) oocytes and to assess its importance for fertilisation and embryo development. Bovine follicular oocytes were subjected to IVM in medium supplemented either with polyvinylpyrrolidone, bovine serum albumin, calf serum or bFF. Nuclear maturation, cumulus expansion, mitochondrial distribution and ATP content in oocytes were compared between groups along with subsequent in vitro fertilisation (IVF) and embryo development. Compared with other supplements, bFF generated significantly enhanced re-distribution of active mitochondria in oocytes and this effect was associated with elevated intracellular ATP content. Furthermore, bFF significantly improved cumulus expansion, which was associated with improved fertilisation rates when cumulus-enclosed oocytes were subjected to IVF; however, its promoting effect was neutralised when denuded oocytes were inseminated. Elevating ATP content in oocytes by bFF did not affect maturation or embryo development but promoted fertilisation when mitochondrial electron transport was blocked in oocytes before IVF by Rotenone. In conclusion, supplementation of IVM medium with bFF promotes sperm penetration both by the improvement of cumulus expansion and by enhancing ATP levels in oocytes, which maintains their ability to be fertilised after mitochondrial stress.


Reproduction ◽  
2010 ◽  
Vol 139 (6) ◽  
pp. 1047-1055 ◽  
Author(s):  
K Bender ◽  
S Walsh ◽  
A C O Evans ◽  
T Fair ◽  
L Brennan

There has been a marked decline in the fertility of dairy cows over the past decades, and metabolomic analysis offers a potential to investigate the underlying causes. Metabolite composition of the follicular fluid, which presents the intrafollicular environment, may be an important factor affecting oocyte maturation and subsequent early embryo development. The aim of the present study was to investigate the metabolic differences between follicular fluid from the dominant follicle of lactating cows and heifers using gas chromatography mass spectrometry (GC–MS)-based metabolomics. Follicular fluid and serum were collected from cows and heifers over three phases of follicle development: newly selected dominant follicles, preovulatory follicles prior to oestrus and post-LH surge follicles. Analysis of the fatty acids revealed that there were 24 fatty acids and 9 aqueous metabolites significantly different between cows and heifers. Of particular interest were the higher concentrations of saturated fatty acids (palmitic acid, P=0.001; stearic acid, P=0.005) in follicular fluid from cows and higher docosahexaenoic acid levels (P=0.022) in follicular fluid from heifers. Analysis of the metabolite composition of serum revealed that follicular fluid had a unique lipid composition. The higher concentrations of detrimental saturated fatty in cows will have a negative impact on oocyte maturation and early embryo development. Overall, the results suggest that the follicle microenvironment in cows potentially places their oocytes at a developmental disadvantage compared with heifers, and that this may contribute to well-characterised differences in fertility.


2020 ◽  
Vol 103 (3) ◽  
pp. 548-559 ◽  
Author(s):  
Zeinab Dehghan ◽  
Samira Mohammadi-Yeganeh ◽  
Mohammad Salehi

Abstract Numerous oocytes are retrieved during in vitro fertilization from patients with polycystic ovary syndrome (PCOS). The poor quality of these oocytes leads to lower fertilization and decreases in cleavage and implantation. MiR-155 is one of the microRNA (miRNA) that is increased in serum and granulosa cells of PCOS patients. In this study, we investigate the effects of miR-155 expression and its target genes on oocyte maturation and embryo development. We used the calcium phosphate protocol to transfect vectors that contained miR-155 or miR-off 155 and alone eGFP into cumulus oophorus complex (COCs) of B6D2F1 female mice for in vitro maturation. Cumulus expansion, nuclear, and cytoplasmic maturation, as well as cleavage rates were determined in groups transfected and compared with the control groups. Quantitative real-time polymerase chain reaction was performed to analyze expression levels of miR-155 and the target genes in the cumulus cells, oocytes, and blastocysts. MiR-155 overexpression in COCs suppressed cumulus expansion, oocyte maturation, and inhibition of endogenous miR-155 by miR-off 155 improved cumulus expansion and oocyte maturation by downregulation and expression increase of the Smad2 and Bcl2 genes. On the other hand, overexpression and downregulation of miR-155 in the COCs led to increase and decrease in cleavage rates by changes in expressions of the Mecp2, Jarid2, and Notch1 genes, respectively (P &lt; 0.05). These results suggested that miR-155 overexpression in granulosa cells of PCOS patients can negatively affect nuclear and cytoplasmic maturation, but this miRNA expression has a positive impact on embryo development.


Sign in / Sign up

Export Citation Format

Share Document