scholarly journals MicroRNAs alteration as early biomarkers for cancer and neurodegenerative diseases: New challenges in pesticides exposure

2020 ◽  
Vol 7 ◽  
pp. 759-767 ◽  
Author(s):  
Chiara Costa ◽  
Michele Teodoro ◽  
Carmela Alessandra Rugolo ◽  
Carmela Alibrando ◽  
Federica Giambò ◽  
...  
Foods ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 106
Author(s):  
Teresa Pinto ◽  
Alfredo Aires ◽  
Fernanda Cosme ◽  
Eunice Bacelar ◽  
Maria Cristina Morais ◽  
...  

Polyphenols, as well as volatile compounds responsible for aromatic features, play a critical role in the quality of vegetables and medicinal, and aromatic plants (MAPs). The research conducted in recent years has shown that these plants contain biologically active compounds, mainly polyphenols, that relate to the prevention of inflammatory processes, neurodegenerative diseases, cancers, and cardiovascular disorders as well as to antimicrobial, antioxidant, and antiparasitic properties. Throughout the years, many researchers have deeply studied polyphenols and volatile compounds in medicinal and aromatic plants, particularly those associated with consumer’s choices or with their beneficial properties. In this context, the purpose of this review is to provide an overview of the presence of volatile and nonvolatile compounds in some of the most economically relevant and consumed vegetables and medicinal and aromatic plants, with an emphasis on bioactive polyphenols, polyphenols as prebiotics, and, also, the most important factors that affect the contents and profiles of the volatile and nonvolatile compounds responsible for the aromatic features of vegetables and MAPs. Additionally, the new challenges for science in terms of improving polyphenol composition and intensifying volatile compounds responsible for the positive characteristics of vegetables and medicinal and aromatic plants are reported.


Author(s):  
Gaetano Isola

Recently, the concept of precision medicine has attracted attention [...]


2014 ◽  
Vol 230 (2) ◽  
pp. 85-103 ◽  
Author(s):  
Maria Teresa Baltazar ◽  
Ricardo Jorge Dinis-Oliveira ◽  
Maria de Lourdes Bastos ◽  
Aristidis M. Tsatsakis ◽  
José Alberto Duarte ◽  
...  

2021 ◽  
Vol 13 ◽  
Author(s):  
Panyue Gao ◽  
Xinrong Li ◽  
Xinzhe Du ◽  
Sha Liu ◽  
Yong Xu

Neurodegenerative diseases are closely related to brain function and the progression of the diseases are irreversible. Due to brain tissue being not easy to acquire, the study of the pathophysiology of neurodegenerative disorders has many limitations—lack of reliable early biomarkers and personalized treatment. At the same time, the blood-brain barrier (BBB) limits most of the drug molecules into the damaged areas of the brain, which makes a big drop in the effect of drug treatment. Exosomes, a kind of endogenous nanoscale vesicles, play a key role in cell signaling through the transmission of genetic information and proteins between cells. Because of the ability to cross the BBB, exosomes are expected to link peripheral changes to central nervous system (CNS) events as potential biomarkers, and can even be used as a therapeutic carrier to deliver molecules specifically to CNS. Here we summarize the role of exosomes in pathophysiology, diagnosis, prognosis, and treatment of some neurodegenerative diseases (Alzheimer’s Disease, Parkinson’s Disease, Huntington’s Disease, Amyotrophic Lateral Sclerosis).


Author(s):  
Joachim Frank

Compared with images of negatively stained single particle specimens, those obtained by cryo-electron microscopy have the following new features: (a) higher “signal” variability due to a higher variability of particle orientation; (b) reduced signal/noise ratio (S/N); (c) virtual absence of low-spatial-frequency information related to elastic scattering, due to the properties of the phase contrast transfer function (PCTF); and (d) reduced resolution due to the efforts of the microscopist to boost the PCTF at low spatial frequencies, in his attempt to obtain recognizable particle images.


2013 ◽  
Vol 55 ◽  
pp. 119-131 ◽  
Author(s):  
Bernadette Carroll ◽  
Graeme Hewitt ◽  
Viktor I. Korolchuk

Autophagy is a process of lysosome-dependent intracellular degradation that participates in the liberation of resources including amino acids and energy to maintain homoeostasis. Autophagy is particularly important in stress conditions such as nutrient starvation and any perturbation in the ability of the cell to activate or regulate autophagy can lead to cellular dysfunction and disease. An area of intense research interest is the role and indeed the fate of autophagy during cellular and organismal ageing. Age-related disorders are associated with increased cellular stress and assault including DNA damage, reduced energy availability, protein aggregation and accumulation of damaged organelles. A reduction in autophagy activity has been observed in a number of ageing models and its up-regulation via pharmacological and genetic methods can alleviate age-related pathologies. In particular, autophagy induction can enhance clearance of toxic intracellular waste associated with neurodegenerative diseases and has been comprehensively demonstrated to improve lifespan in yeast, worms, flies, rodents and primates. The situation, however, has been complicated by the identification that autophagy up-regulation can also occur during ageing. Indeed, in certain situations, reduced autophagosome induction may actually provide benefits to ageing cells. Future studies will undoubtedly improve our understanding of exactly how the multiple signals that are integrated to control appropriate autophagy activity change during ageing, what affect this has on autophagy and to what extent autophagy contributes to age-associated pathologies. Identification of mechanisms that influence a healthy lifespan is of economic, medical and social importance in our ‘ageing’ world.


2020 ◽  
Vol 4 (6) ◽  
pp. 645-675
Author(s):  
Parasuraman Padmanabhan ◽  
Mathangi Palanivel ◽  
Ajay Kumar ◽  
Domokos Máthé ◽  
George K. Radda ◽  
...  

Neurodegenerative diseases (NDDs), including Alzheimer's disease (AD) and Parkinson's disease (PD), affect the ageing population worldwide and while severely impairing the quality of life of millions, they also cause a massive economic burden to countries with progressively ageing populations. Parallel with the search for biomarkers for early detection and prediction, the pursuit for therapeutic approaches has become growingly intensive in recent years. Various prospective therapeutic approaches have been explored with an emphasis on early prevention and protection, including, but not limited to, gene therapy, stem cell therapy, immunotherapy and radiotherapy. Many pharmacological interventions have proved to be promising novel avenues, but successful applications are often hampered by the poor delivery of the therapeutics across the blood-brain-barrier (BBB). To overcome this challenge, nanoparticle (NP)-mediated drug delivery has been considered as a promising option, as NP-based drug delivery systems can be functionalized to target specific cell surface receptors and to achieve controlled and long-term release of therapeutics to the target tissue. The usefulness of NPs for loading and delivering of drugs has been extensively studied in the context of NDDs, and their biological efficacy has been demonstrated in numerous preclinical animal models. Efforts have also been made towards the development of NPs which can be used for targeting the BBB and various cell types in the brain. The main focus of this review is to briefly discuss the advantages of functionalized NPs as promising theranostic agents for the diagnosis and therapy of NDDs. We also summarize the results of diverse studies that specifically investigated the usage of different NPs for the treatment of NDDs, with a specific emphasis on AD and PD, and the associated pathophysiological changes. Finally, we offer perspectives on the existing challenges of using NPs as theranostic agents and possible futuristic approaches to improve them.


2005 ◽  
Vol 38 (17) ◽  
pp. 80
Author(s):  
NELLIE BRISTOL

Sign in / Sign up

Export Citation Format

Share Document