scholarly journals Diagnostic and Therapeutic Potential of Exosomes in Neurodegenerative Diseases

2021 ◽  
Vol 13 ◽  
Author(s):  
Panyue Gao ◽  
Xinrong Li ◽  
Xinzhe Du ◽  
Sha Liu ◽  
Yong Xu

Neurodegenerative diseases are closely related to brain function and the progression of the diseases are irreversible. Due to brain tissue being not easy to acquire, the study of the pathophysiology of neurodegenerative disorders has many limitations—lack of reliable early biomarkers and personalized treatment. At the same time, the blood-brain barrier (BBB) limits most of the drug molecules into the damaged areas of the brain, which makes a big drop in the effect of drug treatment. Exosomes, a kind of endogenous nanoscale vesicles, play a key role in cell signaling through the transmission of genetic information and proteins between cells. Because of the ability to cross the BBB, exosomes are expected to link peripheral changes to central nervous system (CNS) events as potential biomarkers, and can even be used as a therapeutic carrier to deliver molecules specifically to CNS. Here we summarize the role of exosomes in pathophysiology, diagnosis, prognosis, and treatment of some neurodegenerative diseases (Alzheimer’s Disease, Parkinson’s Disease, Huntington’s Disease, Amyotrophic Lateral Sclerosis).

2021 ◽  
Author(s):  
Jared S. Katzeff ◽  
Woojin Scott Kim

Abstract ATP-binding cassette (ABC) transporters are one of the largest groups of transporter families in humans. ABC transporters mediate the translocation of a diverse range of substrates across cellular membranes, including amino acids, nucleosides, lipids, sugars and xenobiotics. Neurodegenerative diseases are a group of brain diseases that detrimentally affect neurons and other brain cells and are usually associated with deposits of pathogenic proteins in the brain. Major neurodegenerative diseases include Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis. ABC transporters are highly expressed in the brain and have been implicated in a number of pathological processes underlying neurodegenerative diseases. This review outlines the current understanding of the role of ABC transporters in neurodegenerative diseases, focusing on some of the most important pathways, and also suggests future directions for research in this field.


2021 ◽  
Vol 22 (6) ◽  
pp. 3064
Author(s):  
Youngpyo Nam ◽  
Gyeong Joon Moon ◽  
Sang Ryong Kim

Neurotrophic factors (NTFs) are essential for cell growth, survival, synaptic plasticity, and maintenance of specific neuronal population in the central nervous system. Multiple studies have demonstrated that alterations in the levels and activities of NTFs are related to the pathology and symptoms of neurodegenerative disorders, such as Parkinson’s disease (PD), Alzheimer’s disease (AD), and Huntington’s disease. Hence, the key molecule that can regulate the expression of NTFs is an important target for gene therapy coupling adeno-associated virus vector (AAV) gene. We have previously reported that the Ras homolog protein enriched in brain (Rheb)–mammalian target of rapamycin complex 1 (mTORC1) axis plays a vital role in preventing neuronal death in the brain of AD and PD patients. AAV transduction using a constitutively active form of Rheb exerts a neuroprotective effect through the upregulation of NTFs, thereby promoting the neurotrophic interaction between astrocytes and neurons in AD conditions. These findings suggest the role of Rheb as an important regulator of the regulatory system of NTFs to treat neurodegenerative diseases. In this review, we present an overview of the role of Rheb in neurodegenerative diseases and summarize the therapeutic potential of AAV serotype 1 (AAV1)-Rheb(S16H) transduction in the treatment of neurodegenerative disorders, focusing on diseases, such as AD and PD.


Author(s):  
S. A. Tsiumpala ◽  
K. M. Starchevska ◽  
V. I. Lushchak

Introduction. Under normal conditions, oxidative stress and proinflammatory processes are tightly controlled. However, during neuroinflammation and overproduction of reactive oxygen species (ROS), homeostasis is disrup­ted, which may lead to development of Alzheimer’s disease, Parkinson’s disease and other neurodegenerative disorders. Inflammatory processes may result in neurodegenerative disorders. Sulforaphane is an isothiocyanate compound which has potential for treatment of neurodegenerative disorders. Its therapeutic potential is based on the ability to activate transcription of genes, that regulate protective cellular mechanisms. The importance of stu­dying sulforaphane as a neuroprotector is based on the fact, that dementias are the seventh leading cause of death glo­bally and actively progress due to aging of human population. In this review, the anti-inflammatory effects of sulforaphane in the brain and its use as a potential neuroprotector in the treatment of neurodegenerative diseases are discussed. The aim of the study – to review available literature sources on the potential use of sulforaphane to prevent or mitigate neuroinflammation. Conclusions. Economic and technological development of mankind and the improvement of the general qua­lity of life leads to prolongation of human life. But, achievements of longevity give new challenges to humanity. In young age and early adulthood, the organisms can relatively easily maintain homeostasis, then in old age intensification of oxidative stress and inflammatory processes can lead to the development of dementias and mental disorders. What should we do now to save clear mind in old age? In this review, sulforaphane is considered to be a potential neuroprotector. Biologically active supplements and drugs containing sulforaphane can weaken up inflammatory processes in the brain and in the body in general, and therefore they can be used for prevention and treatment of neurodegenerative diseases.


2007 ◽  
Vol 27 (1-3) ◽  
pp. 87-104 ◽  
Author(s):  
Lucia Petrozzi ◽  
Giulia Ricci ◽  
Noemi J. Giglioli ◽  
Gabriele Siciliano ◽  
Michelangelo Mancuso

Many lines of evidence suggest that mitochondria have a central role in ageing-related neurodegenerative diseases. However, despite the evidence of morphological, biochemical and molecular abnormalities in mitochondria in various tissues of patients with neurodegenerative disorders, the question “is mitochondrial dysfunction a necessary step in neurodegeneration?” is still unanswered. In this review, we highlight some of the major neurodegenerative disorders (Alzheimer's disease, Parkinson's disease, Amyotrophic lateral sclerosis and Huntington's disease) and discuss the role of the mitochondria in the pathogenetic cascade leading to neurodegeneration.


2011 ◽  
Vol 2011 ◽  
pp. 1-16 ◽  
Author(s):  
Stephen W. Briggs ◽  
Aristea S. Galanopoulou

The incidence of seizures is particularly high in the early ages of life. The immaturity of inhibitory systems, such as GABA, during normal brain development and its further dysregulation under pathological conditions that predispose to seizures have been speculated to play a major role in facilitating seizures. Seizures can further impair or disrupt GABAAsignaling by reshuffling the subunit composition of its receptors or causing aberrant reappearance of depolarizing or hyperpolarizing GABAAreceptor currents. Such effects may not result in epileptogenesis as frequently as they do in adults. Given the central role of GABAAsignaling in brain function and development, perturbation of its physiological role may interfere with neuronal morphology, differentiation, and connectivity, manifesting as cognitive or neurodevelopmental deficits. The current GABAergic antiepileptic drugs, while often effective for adults, are not always capable of stopping seizures and preventing their sequelae in neonates. Recent studies have explored the therapeutic potential of chloride cotransporter inhibitors, such as bumetanide, as adjunctive therapies of neonatal seizures. However, more needs to be known so as to develop therapies capable of stopping seizures while preserving the age- and sex-appropriate development of the brain.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Gabriela A. Salvador ◽  
Romina M. Uranga ◽  
Norma M. Giusto

The accumulation of transition metals (e.g., copper, zinc, and iron) and the dysregulation of their metabolism are a hallmark in the pathogenesis of several neurodegenerative diseases. This paper will be focused on the mechanism of neurotoxicity mediated by iron. This metal progressively accumulates in the brain both during normal aging and neurodegenerative processes. High iron concentrations in the brain have been consistently observed in Alzheimer's (AD) and Parkinson's (PD) diseases. In this connection, metalloneurobiology has become extremely important in establishing the role of iron in the onset and progression of neurodegenerative diseases. Neurons have developed several protective mechanisms against oxidative stress, among them, the activation of cellular signaling pathways. The final response will depend on the identity, intensity, and persistence of the oxidative insult. The characterization of the mechanisms mediating the effects of iron-induced increase in neuronal dysfunction and death is central to understanding the pathology of a number of neurodegenerative disorders.


2021 ◽  
Vol 12 ◽  
Author(s):  
Patrycja Mulica ◽  
Anne Grünewald ◽  
Sandro L. Pereira

Converging evidence made clear that declining brain energetics contribute to aging and are implicated in the initiation and progression of neurodegenerative disorders such as Alzheimer’s and Parkinson’s disease. Indeed, both pathologies involve instances of hypometabolism of glucose and oxygen in the brain causing mitochondrial dysfunction, energetic failure and oxidative stress. Importantly, recent evidence suggests that astrocytes, which play a key role in supporting neuronal function and metabolism, might contribute to the development of neurodegenerative diseases. Therefore, exploring how the neuro-supportive role of astrocytes may be impaired in the context of these disorders has great therapeutic potential. In the following, we will discuss some of the so far identified features underlining the astrocyte-neuron metabolic crosstalk. Thereby, special focus will be given to the role of mitochondria. Furthermore, we will report on recent advancements concerning iPSC-derived models used to unravel the metabolic contribution of astrocytes to neuronal demise. Finally, we discuss how mitochondrial dysfunction in astrocytes could contribute to inflammatory signaling in neurodegenerative diseases.


2021 ◽  
Vol 13 ◽  
Author(s):  
Mohammad Reza Asadi ◽  
Marziyeh Sadat Moslehian ◽  
Hani Sabaie ◽  
Abbas Jalaiei ◽  
Soudeh Ghafouri-Fard ◽  
...  

Cytoplasmic ribonucleoproteins called stress granules (SGs) are considered as one of the main cellular solutions against stress. Their temporary presence ends with stress relief. Any factor such as chronic stress or mutations in the structure of the components of SGs that lead to their permanent presence can affect their interactions with pathological aggregations and increase the degenerative effects. SGs involved in RNA mechanisms are important factors in the pathophysiology of neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS), frontotemporal degeneration (FTD), and Alzheimer's diseases (AD). Although many studies have been performed in the field of SGs and neurodegenerative disorders, so far, no systematic studies have been executed in this field. The purpose of this study is to provide a comprehensive perspective of all studies about the role of SGs in the pathogenesis of neurodegenerative disorders with a focus on the protein ingredients of these granules. This scoping review is based on a six-stage methodology structure and the PRISMA guideline. A systematic search of seven databases for qualified articles was conducted until December 2020. Publications were screened independently by two reviewers and quantitative and qualitative analysis was performed on the extracted data. Bioinformatics analysis was used to plot the network and predict interprotein interactions. In addition, GO analysis was performed. A total of 48 articles were identified that comply the inclusion criteria. Most studies on neurodegenerative diseases have been conducted on ALS, AD, and FTD using human post mortem tissues. Human derived cell line studies have been used only in ALS. A total 29 genes of protein components of SGs have been studied, the most important of which are TDP-43, TIA-1, PABP-1. Bioinformatics studies have predicted 15 proteins to interact with the protein components of SGs, which may be the constituents of SGs. Understanding the interactions between SGs and pathological aggregations in neurodegenerative diseases can provide new targets for treatment of these disorders.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Ana R. Santiago ◽  
Filipa I. Baptista ◽  
Paulo F. Santos ◽  
Gonçalo Cristóvão ◽  
António F. Ambrósio ◽  
...  

Neuroinflammation mediated by microglial cells in the brain has been commonly associated with neurodegenerative diseases. Whether this microglia-mediated neuroinflammation is cause or consequence of neurodegeneration is still a matter of controversy. However, it is unequivocal that chronic neuroinflammation plays a role in disease progression and halting that process represents a potential therapeutic strategy. The neuromodulator adenosine emerges as a promising targeting candidate based on its ability to regulate microglial proliferation, chemotaxis, and reactivity through the activation of its G protein coupledA2Areceptor (A2AR). This is in striking agreement with the ability ofA2ARblockade to control several brain diseases. Retinal degenerative diseases have been also associated with microglia-mediated neuroinflammation, but the role ofA2ARhas been scarcely explored. This review aims to compare inflammatory features of Parkinson’s and Alzheimer’s diseases with glaucoma and diabetic retinopathy, discussing the therapeutic potential ofA2ARin these degenerative conditions.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Saba Sheikh ◽  
Safia ◽  
Ejazul Haque ◽  
Snober S. Mir

Neurodegenerative diseases are multifactorial debilitating disorders of the nervous system that affect approximately 30 millionindividuals worldwide. Neurodegenerative diseases such as Alzheimer’s, Parkinson’s, Huntington’s, and amyotrophic lateral sclerosis diseases are the consequence of misfolding and dysfunctional trafficking of proteins. Beside that, mitochondrial dysfunction, oxidative stress, and/or environmental factors strongly associated with age have also been implicated in causing neurodegeneration. After years of intensive research, considerable evidence has accumulated that demonstrates an important role of these factors in the etiology of common neurodegenerative diseases. Despite the extensive efforts that have attempted to define the molecular mechanisms underlying neurodegeneration, many aspects of these pathologies remain elusive. However, in order to explore the therapeutic interventions directed towards treatment of neurodegenerative diseases, neuroscientists are now fully exploiting the data obtained from studies of these basic mechanisms that have gone awry. The novelty of these mechanisms represents a challenge to the identification of viable drug targets and biomarkers for early diagnosis of the diseases. In this paper, we are reviewing various aspects associated with the disease and the recent trends that may have an application for the treatment of the neurodegenerative disorders.


Sign in / Sign up

Export Citation Format

Share Document