scholarly journals Numerical Simulation of Fire Resistance of Steel Ship Bulkheads

2021 ◽  
Vol 54 ◽  
pp. 733-743
Author(s):  
Marina Gravit ◽  
Ivan Dmitriev
Fire ◽  
2021 ◽  
Vol 4 (4) ◽  
pp. 93
Author(s):  
Xiangsheng Lei ◽  
Jinwu Ouyang ◽  
Yanfeng Wang ◽  
Xinghua Wang ◽  
Xiaofeng Zhang ◽  
...  

The panel performance of a prefabricated cabin-type substation under the impact of fires plays a vital role in the normal operation of the substation. However, current evaluations of the panel performance of substations under fire still focus on fire resistance tests, which seldom consider the relationship between fire behavior and the mechanical load of the panel under the impact of fires. Aiming at the complex and uncertain relationship between the thermal and mechanical performance of the substation panel under impact of fires, this paper proposes a machine learning method based on a BP neural network. First, the fire resistance test and the stress test of the panel is carried out, then a machine learning model is established based on the BP neural network. According to the collected data, the model parameters are obtained through a series of training and verification processes. Meanwhile, the correlation between the panel performance and fire resistance was obtained. Finally, related parameters are input into the thermal–mechanical coupling evaluation model for the substation panel performance to evaluate the fire resistance performance of the substation panel. To verify the correctness of the established model, numerical simulation of the fire test and stress test of the panel is conducted, and numerical simulation samples are predicted by the trained model. The results show that the prediction curve of neural network is closer to the real results compared with the numerical simulation, and the established model can accurately evaluate the thermal–mechanical coupling performance of the substation panel under fire.


2017 ◽  
pp. 171-177
Author(s):  
K. Cábová ◽  
N. Lišková ◽  
F. Zeman ◽  
M. Benýšek ◽  
F. Wald

Structures ◽  
2021 ◽  
Vol 34 ◽  
pp. 339-355
Author(s):  
Xuhong Zhou ◽  
Jingjie Yang ◽  
Jiepeng Liu ◽  
Shang Wang ◽  
Weiyong Wang

2018 ◽  
Vol 7 (2.23) ◽  
pp. 83 ◽  
Author(s):  
Paulo A. G. Piloto ◽  
Lucas M.S. Prates ◽  
Carlos Balsa ◽  
Ronaldo Rigobello

This investigation is related with the fire resistance of composite slabs with steel deck. This composite solution consists of a concrete topping cast on the top of a steel deck. The concrete is typically reinforced with a steel mesh and may also contain individual rebars. The deck also acts as reinforcement and may be exposed to accidental fire conditions from the bottom. This composite solution is widely used in every type of buildings and requires fire resistance, in accordance to regulations. The fire resistance is specified by the loadbearing capacity (R), insulation (I) and integrity (E). The fire rating for (R) and (E) is not in the scope of this investigation. The fire rating for insulation (I) is evaluated by two different methods (numerical simulation and simple calculation). The fire rating is calculated for 32 different geometric configuration, in order to evaluate the effect of the thickness of the concrete layer and the thickness of steel deck. The fire resistance (I) increases with the thickness of the concrete when using both methods, but the simple calculation method seems to be unsafe for all the cases, requiring a revision for the formulae presented in Annex D of EN1994-1-2. A new proposal is presented.  


2009 ◽  
Vol 2009.3 (0) ◽  
pp. 83-84
Author(s):  
Toshio TOMIMURA ◽  
Yasushi KOITO ◽  
Shuichi TORII ◽  
Kenichi YANAGI ◽  
Takaharu YAMASAKI ◽  
...  

2001 ◽  
Vol 2001.54 (0) ◽  
pp. 165-166
Author(s):  
Takahiro OHMURA ◽  
Masatoshi SAKAKURA ◽  
Mikinori TSUBOI ◽  
Toshio TOMIMURA

2022 ◽  
Vol 2153 (1) ◽  
pp. 012005
Author(s):  
J P Rojas Suárez ◽  
J A Pabón León ◽  
M S Orjuela Abril

Abstract In the present investigation, an analysis of the fire resistance of the steel-reinforced concrete-filled steel tubular columns with circular cross-sections was carried out by means of numerical simulation. The development of the study was carried out by means of numerical simulation to predict the behavior of the column against fire. The results of the numerical model are validated by comparing the temperature levels obtained through experimental tests. From the results obtained, it is shown that the increase in the contact area between the steel and the concrete reduces the average temperature of the column, which implies a greater resistance to fire. The fire resistance of the columns with the steel profile designs are between 3.4 - 3.6 times higher compared to the column only made of concrete, which is an indication of the excellent performance of the steel-reinforced concrete-filled steel tubular columns with circular cross- sections columns. In general, the methodology proposed in this research allows the analysis of the thermal physical phenomena of the different columns used for the construction of buildings.


2021 ◽  
pp. 788-800
Author(s):  
António P. C. Duarte ◽  
Inês C. Rosa ◽  
Mário R. T. Arruda ◽  
João P. Firmo ◽  
João R. Correia

Sign in / Sign up

Export Citation Format

Share Document