Thermal–Mechanical Coupling Evaluation of the Panel Performance of a Prefabricated Cabin-Type Substation Based on Machine Learning

Fire ◽  
2021 ◽  
Vol 4 (4) ◽  
pp. 93
Author(s):  
Xiangsheng Lei ◽  
Jinwu Ouyang ◽  
Yanfeng Wang ◽  
Xinghua Wang ◽  
Xiaofeng Zhang ◽  
...  

The panel performance of a prefabricated cabin-type substation under the impact of fires plays a vital role in the normal operation of the substation. However, current evaluations of the panel performance of substations under fire still focus on fire resistance tests, which seldom consider the relationship between fire behavior and the mechanical load of the panel under the impact of fires. Aiming at the complex and uncertain relationship between the thermal and mechanical performance of the substation panel under impact of fires, this paper proposes a machine learning method based on a BP neural network. First, the fire resistance test and the stress test of the panel is carried out, then a machine learning model is established based on the BP neural network. According to the collected data, the model parameters are obtained through a series of training and verification processes. Meanwhile, the correlation between the panel performance and fire resistance was obtained. Finally, related parameters are input into the thermal–mechanical coupling evaluation model for the substation panel performance to evaluate the fire resistance performance of the substation panel. To verify the correctness of the established model, numerical simulation of the fire test and stress test of the panel is conducted, and numerical simulation samples are predicted by the trained model. The results show that the prediction curve of neural network is closer to the real results compared with the numerical simulation, and the established model can accurately evaluate the thermal–mechanical coupling performance of the substation panel under fire.

2021 ◽  
pp. 1-13
Author(s):  
Jing Duan ◽  
Xiaoxia Wan ◽  
Jianan Luo

Abstract Due to the vast ocean area and limited human and material resources, hydrographic survey must be carried out in a selective and well-planned way. Therefore, scientific planning of hydrographic surveys to ensure the effectiveness of navigational charts has become an urgent issue to be addressed by the hydrographic office of each coastal state. In this study, a reasonable calculation model of hydrographic survey cycle is established, which can be used to make the plan of navigational chart updating. The paper takes 493 navigational charts of Chinese coastal ports and fairways as the research object, analyses the fundamental factors affecting the hydrographic survey cycle and gives them weights, proposes to use the BP neural network to construct the relationship between the cycle and the impact factors, and finally establishes a calculation model of the hydrographic survey cycle. It has been verified that the calculation cycle of the model is effective, and it can provide reference for hydrographic survey planning and chart updating, as well as suggestions for navigation safety.


2019 ◽  
Vol 13 ◽  
pp. 302-309
Author(s):  
Jakub Basiakowski

The following paper presents the results of research on the impact of machine learning in the construction of a voice-controlled interface. Two different models were used for the analysys: a feedforward neural network containing one hidden layer and a more complicated convolutional neural network. What is more, a comparison of the applied models was presented. This comparison was performed in terms of quality and the course of training.


2021 ◽  
Author(s):  
Marco Luca Sbodio ◽  
Natasha Mulligan ◽  
Stefanie Speichert ◽  
Vanessa Lopez ◽  
Joao Bettencourt-Silva

There is a growing trend in building deep learning patient representations from health records to obtain a comprehensive view of a patient’s data for machine learning tasks. This paper proposes a reproducible approach to generate patient pathways from health records and to transform them into a machine-processable image-like structure useful for deep learning tasks. Based on this approach, we generated over a million pathways from FAIR synthetic health records and used them to train a convolutional neural network. Our initial experiments show the accuracy of the CNN on a prediction task is comparable or better than other autoencoders trained on the same data, while requiring significantly less computational resources for training. We also assess the impact of the size of the training dataset on autoencoders performances. The source code for generating pathways from health records is provided as open source.


2021 ◽  
Author(s):  
Chongyu Wang ◽  
Di Zhang ◽  
Yonghui Xie

Abstract The steam turbine rotor is still the main power generation equipment. Affected by the impact of new energy on the power grid, the steam turbine needs to participate in peak load regulation, which will make turbine rotor components more prone to failure. The rotor is an important equipment of a steam turbine. Unbalance and misalignment are the normal state of rotor failure. In recent years, more and more attention has been paid to the fault detection method based on deep learning, which takes rotating machinery as the object. However, there is a lack of research on actual steam turbine rotors. In this paper, a method of rotor unbalance and parallel misalignment fault detection based on residual network is proposed, which realizes the end-to-end fault detection of rotor. Meanwhile, the method is evaluated with numerical simulation data, and the multi task detection of rotor unbalance, parallel misalignment, unbalanced parallel misalignment coupling faults (coupling fault called in this paper) is realized. The influence of signal-to-noise ratio and the number of training samples on the detection performance of neural network is discussed. The detection accuracy of unbalanced position is 93.5%, that of parallel misalignment is 99.1%. The detection accuracy for unbalance and parallel misalignment is 89.1% and 99.1%, respectively. The method can realize the direct mapping between the unbalanced, parallel misalignment, coupling fault vibration signals and the fault detection results. The method has the ability to automatically extract fault features. It overcomes the shortcoming of traditional methods that rely on signal processing experience, and has the characteristics of high precision and strong robustness.


Proceedings ◽  
2018 ◽  
Vol 2 (8) ◽  
pp. 547
Author(s):  
Xiamei Zhang ◽  
Shudan Xia

Aero engine is impacted by foreign objects frequently during daily usage, including runway gravel, birds, fuselage components and so on, so the fan and compressor may damage, resulting in serious air crash. Thus, simulating the impact of blades and establishing the numerical analysis model of dynamic response demand immediate attention. In the analysis model, damping coefficient is one of the most important physical parameters of the blade structure and cannot be directly measured. Rayleigh damping is widely applied and can be converted to direct modal damping in ABAQUS. BP neural network is a multi-layer feedforward neural network using back propagation algorithm to adjust the network weights. It can be proved that there exists a three-layer BP network to realize the mapping of arbitrary continuous functions with arbitrary precision. In this study, a novel method for obtaining the damping ratio of the flat blade which applies BP neural network inversion is proposed. In order to demonstrate this method, a simplified experiment was conducted. Firstly, fix a section of aluminum plate and then conduct two set of drop tests on different positions with different impact velocities by a steel ball. At the same time, vibration response was recorded by displacement sensor. Secondly, establish a finite element model using ABAQUS to simulate the drop test. Adopt twenty groups of models with different damping ratio and then obtain their amplitudes and decay time, respectively. Thirdly, train a BP neural network using MATLAB program and then establish the mapping relationship between amplitude, decay time and damping ratio. Fourth, a set of experimental amplitude and decay time is substituted into the previously obtained BP neural network mapping model, and then the real damping ratio is obtained by inference. Finally, the real damping ratio is applied to the flat blade impact simulation of the other set of drop test for validation. The numerical results are consistent with the experimental data, which indicates that the damping ratio obtained by BP neural network inversion is reasonable and reliable.


2014 ◽  
Vol 587-589 ◽  
pp. 37-41 ◽  
Author(s):  
Yi Hua Mao ◽  
Meng Bo Zhang ◽  
Ning Bo Yao

Hangzhou, the capital of Zhejiang province and a famous scenic tourist city in China, goes at the forefront of the country for its high real estate prices, which hold a very important position of orientation to pricing in the real estate markets of the Yangtze River Delta region and of the whole country as well. The price trend of Hangzhou's real estate is even related to the sustainable development of the city. This paper uses the macro data on the housing market in Hangzhou during 1999-2012 to establish a forecasting model which is based on BP neural network of genetic algorithm optimization. With MATLAB software exploited for programming and simulation, the prediction made by the model about the housing demand in Hangzhou and the subsequent re-examination show that the model has high precision. But due to the impact of the national macro-control policies on housing market, the predictive value of some years may fluctuate to a certain extent.


2012 ◽  
Vol 260-261 ◽  
pp. 548-553
Author(s):  
Teng Li ◽  
Xiao Mei Yuan ◽  
Shi Liang Yang ◽  
Xin Hui Zhang

A new approach is presented for analyzing gas mixtures by transforming the problem into a pattern classification one to reduce the effect of the poor repeatability of sensor response on the prediction of gas concentration. The aim of numerical simulation is to determine how successfully the approach using the combination of artificial neural networks with multi-sensor arrays can analyze multi-component gas mixtures. The results indicate that the new approach is realistic for gas mixture analysis, and numerical simulation is a powerful tool to determine the architecture of a network. By constructing improved BP neural network algorithm and basic BP neural network into sensor array signal processing and extracting 6 component as the input of neural network, Our investigation results indicated that recognition results obtained from improved BP neural network algorithm more accuracy than the results obtained from basic BP neural network.


2020 ◽  
Author(s):  
Jifeng Zhang ◽  
Bing Feng ◽  
Dong Li

<p>An artificial neural network, which is an important part of artificial intelligence, has been widely used to many fields such as information processing, automation and economy, and geophysical data processing as one of the efficient tools. However, the application in geophysical electromagnetic method is still relatively few. In this paper, BP neural network was combined with airborne transient electromagnetic method for imaging subsurface geological structures.</p><p>We developed an artificial neural network code to map the distribution of geologic conductivity in the subsurface for the airborne transient electromagnetic method. It avoids complex derivation of electromagnetic field formula and only requires input and transfer functions to obtain the quasi-resistivity image section. First, training sample set, which is airborne transient electromagnetic response of homogeneous half-space models with the different resistivity, is formed and network model parameters include the flight altitude and the time constant, which were taken as input variables of the network, and pseudo-resistivity are taken as output variables. Then, a double hidden layer BP neural network is established in accordance with the mapping relationship between quasi-resistivity and airborne transient electromagnetic response. By analyzing mean square error curve, the training termination criterion of BP neural network is presented. Next, the trained BP neural network is used to interpret the airborne transient electromagnetic responses of various typical layered geo-electric models, and it is compared with those of the all-time apparent resistivity algorithm. After a lot of tests, reasonable BP neural network parameters were selected, and the mapping from airborne TEM quasi-resistivity was realized. The results show that the resistivity imaging from BP neural network approach is much closer to the true resistivity of model, and the response to anomalous bodies is better than that of all-time apparent resistivity numerical method. Finally, this imaging technique was use to process the field data acquired by the airborne transient method from Huayangchuan area. Quasi-resistivity depth section calculated by BP neural network and all-time apparent resistivity is in good agreement with the actual geological situation, which further verifies the effectiveness and practicability of this algorithm.</p>


2011 ◽  
Vol 243-249 ◽  
pp. 4581-4586
Author(s):  
Lei Ming He ◽  
Li Hui Du ◽  
Jian Yang

In the numerical calculation of geotechnical project, it’s difficult to confirm the parameters because of the complexity and the uncertainty of them as the time is changing. However, the back-analysis provides us an effective way. Based on the result of the triaxial test on rock-fill of Shui Bu Ya CFRD, the thesis adopts the direct back-analysis method which combines the BP Neural Network and Genetic Algorithm to calculate the Tsinghua non-linear K-G model parameters of the rock-fill. The back-analysis parameters are used to simulate the filling process of Shui Bu Ya CFRD and predict the displacement of the dam. The thesis provides a technical reference for displacement back-analysis of soil parameters for CFRD.


2014 ◽  
Vol 986-987 ◽  
pp. 524-528 ◽  
Author(s):  
Ting Jing Ke ◽  
Min You Chen ◽  
Huan Luo

This paper proposes a short-term wind power dynamic prediction model based on GA-BP neural network. Different from conventional prediction models, the proposed approach incorporates a prediction error adjusting strategy into neural network based prediction model to realize the function of model parameters self-adjusting, thus increase the prediction accuracy. Genetic algorithm is used to optimize the parameters of BP neural network. The wind power prediction results from different models with and without error adjusting strategy are compared. The comparative results show that the proposed dynamic prediction approach can provide more accurate wind power forecasting.


Sign in / Sign up

Export Citation Format

Share Document