Steady-state thermal investigations on cold plate using FEM

2021 ◽  
Vol 23 ◽  
pp. 100905
Author(s):  
S.R. Amrut ◽  
Bhardwaj M. Sachin ◽  
Ponangi Babu Rao ◽  
K.N. Seetharamu
2018 ◽  
Vol 7 (4.35) ◽  
pp. 148 ◽  
Author(s):  
Nur Irmawati Om ◽  
Rozli Zulkifli ◽  
P. Gunnasegaran

The influence of utilizing different nanofluids types on the liquid cold plate (LCP) is numerically investigated. The thermal and fluid flow performance of LCP is examined by using pure ethylene glycol (EG), Al2O3-EG and CuO-EG. The volume fraction of the nanoparticle for both nanofluid is 2%. The finite volume method (FVM) has been used to solved 3-D steady state, laminar flow and heat transfer governing equations. The presented results indicate that Al2O3-EG able to provide the lowest surface temperature of the heater block followed by CuO-EG and EG, respectively. It is also found that the pressure drop and friction factor are higher for Al2O3-EG and CuO-EG compared to the pure EG.


2017 ◽  
Vol 19 (1) ◽  
pp. 77-90 ◽  
Author(s):  
G. A. Quadir ◽  
Shiao Lin Bell ◽  
K. N. Seetharamu ◽  
A. Y. Hassan

Steady state analysis of a single stack cold plate used for the cooling of electronic components is carried out using the finite element method. The present methodology takes into account the heat losses from the top and bottom surfaces of the stack. In addition dimensionless parameters are used in the analysis. The analysis is divided into two parts: a single unit cell analysis and the analysis of the assembly of several unit cells. The results from the present analysis of a single unit cell for single stack cold plate without heat losses compare well with those available in the literature. The analyses of the assembly of unit cells with heat losses from the top and bottom surface of the stack show that the single unit cell can be considered to be the representative of the stacks only when there are no heat losses.


1991 ◽  
Vol 69 (10) ◽  
pp. 1584-1588 ◽  
Author(s):  
Hui Lü ◽  
Derek G. Leaist

A conductimetric technique is used to measure thermal diffusion in aqueous solutions of sodium carbonate. In dilute solutions hydrolysis produces significant amounts of sodium bicarbonate and sodium hydroxide: Na2CO3 + H2O = NaHCO3 + NaOH. The applied temperature gradient causes the various solutes to migrate to the cooler parts of the solution. NaOH is found to diffuse more rapidly than NaHCO3, leading to the accumulation of excess NaOH (relative to NaHCO3) at the cold plate. Binary Na2CO3(m) + H2O mixtures therefore separate into ternary Na2CO3(m1) + NaOH(m2) + H2O mixtures under nonisothermal conditions. The steady-state molality gradients dm1/dT and dm2/dT and the ternary heats of transport of aqueous Na2CO3 and NaOH are reported. Key words: aqueous sodium carbonate, hydrolysis, mixed electrolytes, Soret coefficient, thermal diffusion.


2003 ◽  
Vol 39 (5) ◽  
pp. 519-528 ◽  
Author(s):  
G. Quadir ◽  
Shiao Beh ◽  
K. Seetharamu ◽  
A. Hassan

Author(s):  
V. Tudor ◽  
M. Cerza

The future capabilities of naval ships will be directly related to the electronic components used in advanced radar systems, fire control systems, electric propulsion and even electric weapons. The next generation of naval warships will fall under the concept of an all electric ship, where turbines convert all the power produced by the engine into electricity. This electrical power can then be distributed given the ship’s mission and operating profile. The current need for advanced electronics cooling techniques is paramount since power dissipation levels are rapidly exceeding the capabilities of forced air convection cooling. This paper reports an experimental investigation of the start-up and transient response to heat load change of a capillary assisted thermosyphon (CAT) for the shipboard cooling of electronics components. The capillary assisted thermosyphon differs from a capillary pumped loop or loop heat pipe system in that the basic cooling-loop is based on a thermosyphon. The capillary assist comes from the fact that there is a wicking structure in the flat evaporator plate. The wicking structure allows uniformly spread of the working fluid across the flat plate evaporator in the areas under the heat sources as well as providing additional capillary pumping assist to the loop. A vertical flat plate, CAT evaporator was designed and tested under a fixed thermal sink temperature of 21°C. The condenser cold plate cooling water flow rate was fixed as 3.785 liters per minute (i.e. 1 gpm). The heat input varied from 250 to 1000W — evenly spread over the area of the evaporator. The CAT flat plate evaporator performed very well under this range of heat inputs, sink temperature, and cold plate flow rate. The main result obtained showed that the CAT loop reached steady state operation within 10 min. to 15 min. The average plate temperature did not exceed 70°C for the maximum heat input of 1000W. The CAT evaporator operating temperature increased with increasing heat input for all conditions tested and reached 60°C at 1000W. The continuous and stable operation of the CAT loop during start-up, steady-state and during transient/sudden heat input variations indicates that the CAT loop is a viable solution for high flux electronics components cooling.


Author(s):  
R. C. Moretz ◽  
G. G. Hausner ◽  
D. F. Parsons

Use of the electron microscope to examine wet objects is possible due to the small mass thickness of the equilibrium pressure of water vapor at room temperature. Previous attempts to examine hydrated biological objects and water itself used a chamber consisting of two small apertures sealed by two thin films. Extensive work in our laboratory showed that such films have an 80% failure rate when wet. Using the principle of differential pumping of the microscope column, we can use open apertures in place of thin film windows.Fig. 1 shows the modified Siemens la specimen chamber with the connections to the water supply and the auxiliary pumping station. A mechanical pump is connected to the vapor supply via a 100μ aperture to maintain steady-state conditions.


2021 ◽  
Author(s):  
Wu Lan ◽  
Yuan Peng Du ◽  
Songlan Sun ◽  
Jean Behaghel de Bueren ◽  
Florent Héroguel ◽  
...  

We performed a steady state high-yielding depolymerization of soluble acetal-stabilized lignin in flow, which offered a window into challenges and opportunities that will be faced when continuously processing this feedstock.


2008 ◽  
Vol 45 ◽  
pp. 161-176 ◽  
Author(s):  
Eduardo D. Sontag

This paper discusses a theoretical method for the “reverse engineering” of networks based solely on steady-state (and quasi-steady-state) data.


Sign in / Sign up

Export Citation Format

Share Document