Tuning silicon nitride refractive index through radio-frequency sputtering power

2021 ◽  
pp. 138951
Author(s):  
Daniela De Luca ◽  
Emiliano Di Gennaro ◽  
Davide De Maio ◽  
Carmine D’Alessandro ◽  
Antonio Caldarelli ◽  
...  
NANO ◽  
2012 ◽  
Vol 07 (06) ◽  
pp. 1250051 ◽  
Author(s):  
CHIN WEI LAI ◽  
SRIMALA SREEKANTAN

WO3 -incorporated C–TiO2 nanotubes were successfully fabricated using radio frequency sputtering technique. The effects of sputtering powers on the nanotube morphology, crystal structure, optical properties and visible photoresponse were investigated. Lattice substitution of WO3 species within the lattice of C–TiO2 nanotubes has an important function in maximizing the photocurrent generation. WO3 -incorporated C–TiO2 nanotubes exhibit good visible photoresponse compared with C–TiO2 nanotubes. The interpretation of interband states has an important function in improving photoinduced electron transport.


2011 ◽  
Vol 194-196 ◽  
pp. 2340-2346 ◽  
Author(s):  
Hong Yu Liang ◽  
Qing Nan Zhao ◽  
Feng Gao ◽  
Wen Hui Yuan ◽  
Yu Hong Dong

With a mixture gas of N2 and Ar, silicon nitride thin films were deposited on glass substrates by different radio frequency (RF) magnetron sputtering power without intentional substrate heating. The chemical composition, phase structure, surface morphology, optical properties, refractive index, hydrophobic properties of the films were characterized by X-ray energy dispersive spectroscopy(EDS), X-ray diffraction(XRD), field emission scanning electron microscopy(FESEM), ultraviolet-visible spectroscopy(UV-Vis), nkd-system spectrophotometer and CA-XP150 contact angle analyzer, respectively. The results showed that silicon nitride thin films were amorphous and rich in Si; the transmittance reduced but refractive index and surface roughness increased; and the hydrophobic properties of SiNx became better with the increase of RF power.


Coatings ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 54
Author(s):  
Nikolett Hegedüs ◽  
Riku Lovics ◽  
Miklós Serényi ◽  
Zsolt Zolnai ◽  
Péter Petrik ◽  
...  

In this work, amorphous hydrogen-free silicon nitride (a-SiNx) and amorphous hydrogenated silicon nitride (a-SiNx:H) films were deposited by radio frequency (RF) sputtering applying various amounts of hydrogen gas. Structural and optical properties were investigated as a function of hydrogen concentration. The refractive index of 1.96 was characteristic for hydrogen-free SiNx thin film and with increasing H2 flow it decreased to 1.89. The hydrogenation during the sputtering process affected the porosity of the thin film compared with hydrogen-free SiNx. A higher porosity is consistent with a lower refractive index. Fourier-transform infrared spectroscopy (FTIR) confirmed the presence of 4 at.% of bounded hydrogen, while elastic recoil detection analysis (ERDA) confirmed that 6 at.% hydrogen was incorporated during the growing mechanism. The molecular form of hydrogen was released at a temperature of ~65 °C from the film after annealing, while the blisters with 100 nm diameter were created on the thin film surface. The low activation energy deduced from the Arrhenius method indicated the diffusion of hydrogen molecules.


Sign in / Sign up

Export Citation Format

Share Document