Near room temperature atomic layer deposition of ZnO thin films on poly (methyl methacrylate) (PMMA) templates: A study of structure, morphology and photoluminescence of ZnO as an effect of template confinement

Vacuum ◽  
2019 ◽  
Vol 161 ◽  
pp. 398-403 ◽  
Author(s):  
Ajaib Singh ◽  
Aakash Mathur ◽  
Dipayan Pal ◽  
Amartya Sengupta ◽  
Rinki Singh ◽  
...  
2018 ◽  
Vol 36 (1) ◽  
pp. 01A109 ◽  
Author(s):  
Julian Pilz ◽  
Alberto Perrotta ◽  
Paul Christian ◽  
Martin Tazreiter ◽  
Roland Resel ◽  
...  

2021 ◽  
Vol 27 (S1) ◽  
pp. 2660-2662
Author(s):  
David Elam ◽  
Eduardo Ortega ◽  
Andrey Chabanov ◽  
Arturo Ponce

2021 ◽  
Author(s):  
Yuanyuan Cao ◽  
Sha Zhu ◽  
Julien Bachmann

The two-dimensional material and semiconducting dichalcogenide hafnium disulfide is deposited at room temperature by atomic layer deposition from molecular precursors dissolved in hexane.


2001 ◽  
Vol 65 (1-4) ◽  
pp. 125-132 ◽  
Author(s):  
Y. Yamamoto ◽  
K. Saito ◽  
K. Takahashi ◽  
M. Konagai

Impact ◽  
2020 ◽  
Vol 2020 (5) ◽  
pp. 16-18
Author(s):  
Fumihiko Hirose

Thin films can be used to improve the surface properties of materials, enhancing elements such as absorption, abrasion resistance and corrosion resistance, for example. These thin films provide the foundation for a variety of applications in various fields and their applications depend on their morphology and stability, which is influenced by how they are deposited. Thin films can be deposited in different ways. One of these is a technology called atomic layer deposition (ALD). Professor Fumihiko Hirose, a scientist based at the Graduate School of Science and Engineering, Yamagata University, Japan, is conducting research on the room temperature ALD of oxide metals. Along with his team, Professor Hirose has developed a new and improved way of performing ALD to create thin films, and the potential applications are endless.


2006 ◽  
Vol 510-511 ◽  
pp. 670-673 ◽  
Author(s):  
Chong Mu Lee ◽  
Yeon Kyu Park ◽  
Anna Park ◽  
Choong Mo Kim

This paper investigated the effects of annealing atmosphere on the carrier concentration, carrier mobility, electrical resistivity, and PL characteristics as well as the crystallinity of ZnO films deposited on sapphire substrates by atomic layer deposition (ALD). X-ray diffraction (XRD) and photoluminescence (PL) analyses, and Hall measurement were performed to investigate the crystallinity, optical properties and electrical properties of the ZnO thin films, respectively. According to the XRD analysis results, the crystallinity of the ZnO film annealed in an oxygen atmosphere is better than that of the ZnO film annealed in a nitrogen atmosphere. It was found that annealing undoped ZnO films grown by ALD at a high temperature above 600°C improves the crystallinity and enhances UV emission.


2008 ◽  
Vol 14 (4) ◽  
pp. 1053-1057 ◽  
Author(s):  
Hsing-Chao Chen ◽  
Miin-Jang Chen ◽  
Mong-Kai Wu ◽  
Yung-Chen Cheng ◽  
Feng-Yu Tsai

Sign in / Sign up

Export Citation Format

Share Document