DETECTION OF CARDIOTOXIC SIDE EFFECTS OF POTENTIAL DRUG CANDIDATES USING THE ISOLATED GUINEA PIG LANGENDORFF HEART ASSAY

2007 ◽  
Vol 56 (2) ◽  
pp. e9
Author(s):  
Liang Guo ◽  
Zedong Dong ◽  
Heather Guthrie ◽  
Kristy D. Bruse
2018 ◽  
Vol 25 (21) ◽  
pp. 2503-2519 ◽  
Author(s):  
Anne Kokel ◽  
Marianna Torok

Background: Since the first isolation of antimicrobial peptides (AMPs) they have attracted extensive interest in medicinal chemistry. However, only a few AMP-based drugs are currently available on the market. Despite their effectiveness, biodegradability, and versatile mode of action that is less likely to induce resistance compared to conventional antibiotics, AMPs suffer from major issues that need to be addressed to broaden their use. Notably, AMPs can lack selectivity leading to side effects and cytotoxicity, and also exhibit in vivo instability. Several strategies are being actively considered to overcome the limitations that restrain the success of AMPs. Methods: In the current work, recent strategies reported for improving AMPs in the context of drug design and delivery were surveyed, and also their possible impact on patients and the environment was assessed. Results: As a major advantage AMPs possess an easily tunable skeleton offering opportunities to improve their properties. Strategic structural modifications and the beneficial properties of cyclic or branched AMPs in term of stability have been reported. The conjugation of AMPs with nanoparticles has also been explored to increase their in vivo stability. Other techniques such as the coupling of AMPs with specific antibodies aim to increase the selectivity of the potential drug towards the target. These strategies were evaluated for their effect on the environment highlighting green technologies. Conclusion: Although further research is needed taking into account both environmental and human health consequences of novel AMPs, several of these compounds are promising drug candidates for use in sustainable medicine.


Author(s):  
Yingdong Cao ◽  
Hong Lu

Tuberculosis is a deadly communicable disease caused by the bacillus Mycobacterium tuberculosis (MTB), and pulmonary tuberculosis accounts for over 80% of the total cases. The 1,2,4-triazole is a privileged structure in the discovery of new drugs, and its derivatives act on various targets in MTB. In particular, 1,2,4-triazole hybrids can not only exert dual or multiple antitubercular mechanisms of action but also have the potential to enhance efficacy and reduce side effects. The present work aims to summarize the current status of 1,2,4-triazole hybrids as potential antitubercular agents, covering articles published between 2010 and 2020, to aid the further rational design of novel potential drug candidates endowed with higher efficacy, better compliance and fewer side effects.


VirusDisease ◽  
2021 ◽  
Author(s):  
Anish Nag ◽  
Ritesh Banerjee ◽  
Rajshree Roy Chowdhury ◽  
Chandana Krishnapura Venkatesh

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Olfa Chiboub ◽  
Ines Sifaoui ◽  
Manef Abderrabba ◽  
Mondher Mejri ◽  
José J. Fernández ◽  
...  

Abstract Background The in vitro activity of the brown seaweed Dictyota spiralis against both Leishmania amazonensis and Trypanosoma cruzi was evaluated in a previous study. Processing by bio-guided fractionation resulted in the isolation of three active compounds, classified as diterpenes. In the present study, we performed several assays to detect clinical features associated to cell death in L. amazonensis and T. cruzi with the aim to elucidate the mechanism of action of these compounds on parasitic cells. Methods The aims of the experiments were to detect and evaluate specific events involved in apoptosis-like cell death in the kinetoplastid, including DNA condensation, accumulation of reactive oxygen species and changes in ATP concentration, cell permeability and mitochondrial membrane potential, respectively, in treated cells. Results The results demonstrated that the three isolated diterpenes could inhibit the tested parasites by inducing an apoptosis-like cell death. Conclusions These results encourage further investigation on the isolated compounds as potential drug candidates against both L. amazonensis and T. cruzi. Graphic abstract


2021 ◽  
Vol 37 (5) ◽  
pp. 1051-1061
Author(s):  
Tahmeena Khan ◽  
Saima Zehra ◽  
Almas Alvi ◽  
Umama Fatima ◽  
Alfred J. Lawrence

Schiff based ligands and their complexes have emerged as potential drug candidates. Owing to their excellent chelating tendency, they easily coordinate with transition metals which have vacant orbitals. Transition metal complexes have several advantages because of their better acceptability and low toxicity in biological systems. These metals also serve as micronutrients and as co-factors of various metallo-enzymes which justifies the need of their designing and synthesis. Many modifications have been suggested in the ligand moiety for the purpose of activity enhancement and some of them have been described in the present review. These modifications have enhanced better potency against a number of diseases and resulting in low toxicity and better solubility in vivo. The transition metal complexes with Schiff based complexes have exhibited an array of activities including anticancer, antioxidant and antimicrobial. Their analytical applications have also been reported. The present review summarizes some of the recent advances in the field of synthesis and designing of new Schiff based complexes particularly with first transition series metals and their medicinal applications.


2021 ◽  
Vol 21 (18) ◽  
pp. 1644-1644
Author(s):  
Lian-Shun Feng

Cancer, a highly heterogeneous disease at intra/inter patient levels, is one of the most serious threats to human health across the world [1, 2]. Notwithstanding the noteworthy advances in its treat-ment, the morbidity and mortality of cancer are projected to grow for a long period, and the global cancer burden is expected to be 28.4 million cases in 2040, a 47% rise from 2020 [3]. Accordingly, there is a constant need to explore novel anticancer agents. <p> There are several strategies to discover novel anticancer candidates: (1) new lead hits or candidates from natural resources [4] whichexhibit various biological properties and are a rich source of com-pounds in drug discovery due to the structural and mechanistic diversity, and more than 60% anti-cancer agents can be traced to a natural product; (2) Molecular hybridization is one of the most prom-ising strategies for the discovery of novel anticancer drug candidates since hybrid molecules have the potential to bind multiple targets or to enhance the effect through acting with another bio-target or to counterbalance the side effects caused by the other part of the hybrid [5]; (3) Dimerization is a useful tool to develop novel anticancer drug candidates with enhanced biological activity, reduced side effects and improved pharmacokinetic profiles [6]; (4) Drug repurposing strategy is is an attractive strategy and has been approved, along with non-anticancer macrolide drugs for the treatment of cancer, for anticancer drug discovery since toxicity and pharmacokinetic profiles have already been estab-lished [7]. <p> Heterocycles coumarin, β-lactone, macrolide and triazole are useful anticancer pharmacophores since their derivatives could exert the anticancer activity through diverse mechanisms, inclusive of inhibition of aromatase, carbonic anhydrase, ki-nase, P-glycoprotein, sulfatase, telomerase, vascular endothelial growth factor receptor 2 and tubulin [8-11]. In particular, nat-ural-derived coumarin, β-lactone and macrolide derivatives are important sources of new anticancer lead hits/candidates; mac-rolide repurposed drugs can circumvent high cost and long-time associated with traditional drug discovery strategies; couma-rin, β-lactone and macrolide hybrids as well as bis-triazole compounds have the potential to enhance the anticancer activity, overcome drug resistance, reduce the side effects and improve pharmacokinetic profiles.


2019 ◽  
Vol 20 (17) ◽  
pp. 4283 ◽  
Author(s):  
Hyeanjeong Jeong ◽  
Seulgi Shin ◽  
Jun-Seok Lee ◽  
Soo Hyun Lee ◽  
Ja-Hyun Baik ◽  
...  

Epigenetic remodeling via histone acetylation has become a popular therapeutic strategy to treat Alzheimer’s disease (AD). In particular, histone deacetylase (HDAC) inhibitors including M344 and SAHA have been elucidated to be new drug candidates for AD, improving cognitive abilities impaired in AD mouse models. Although emerged as a promising target for AD, most of the HDAC inhibitors are poorly selective and could cause unwanted side effects. Here we show that tau is one of the cytosolic substrates of HDAC and the treatment of HDAC inhibitors such as Scriptaid, M344, BML281, and SAHA could increase the level of acetylated tau, resulting in the activation of tau pathology.


MedChemComm ◽  
2014 ◽  
Vol 5 (7) ◽  
pp. 862-878 ◽  
Author(s):  
Sumati Bhatia ◽  
Mathias Dimde ◽  
Rainer Haag

Author(s):  
Jenna Passarini ◽  
John P. Cleary ◽  
Preetham Kumar ◽  
Trisha Newton ◽  
Michael Sharma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document