Proteomic analysis of embryonic stem cell-derived smooth muscle cells

2006 ◽  
Vol 45 (3) ◽  
pp. e72
Author(s):  
Xiaoke Yin ◽  
Qingzhong Xiao ◽  
Ursula Mayr ◽  
Manuel Mayr ◽  
Qingbo Xu
PROTEOMICS ◽  
2006 ◽  
Vol 6 (24) ◽  
pp. 6437-6446 ◽  
Author(s):  
Xiaoke Yin ◽  
Manuel Mayr ◽  
Qingzhong Xiao ◽  
Wen Wang ◽  
Qingbo Xu

Hypertension ◽  
2009 ◽  
Vol 53 (2) ◽  
pp. 196-204 ◽  
Author(s):  
Shiva Prasad Potta ◽  
Huamin Liang ◽  
Kurt Pfannkuche ◽  
Johannes Winkler ◽  
Shuhua Chen ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 792
Author(s):  
Xixiang Gao ◽  
Mingjie Gao ◽  
Jolanta Gorecka ◽  
John Langford ◽  
Jia Liu ◽  
...  

Induced pluripotent stem cells (iPSC) represent an innovative, somatic cell-derived, easily obtained and renewable stem cell source without considerable ethical issues. iPSC and their derived cells may have enhanced therapeutic and translational potential compared with other stem cells. We previously showed that human iPSC-derived smooth muscle cells (hiPSC-SMC) promote angiogenesis and wound healing. Accordingly, we hypothesized that hiPSC-SMC may be a novel treatment for human patients with chronic limb-threatening ischemia who have no standard options for therapy. We determined the angiogenic potential of hiPSC-SMC in a murine hindlimb ischemia model. hiPSC-SMC were injected intramuscularly into nude mice after creation of hindlimb ischemia. Functional outcomes and perfusion were measured using standardized scores, laser Doppler imaging, microCT, histology and immunofluorescence. Functional outcomes and blood flow were improved in hiPSC-SMC-treated mice compared with controls (Tarlov score, p < 0.05; Faber score, p < 0.05; flow, p = 0.054). hiPSC-SMC-treated mice showed fewer gastrocnemius fibers (p < 0.0001), increased fiber area (p < 0.0001), and enhanced capillary density (p < 0.01); microCT showed more arterioles (<96 μm). hiPSC-SMC treatment was associated with fewer numbers of macrophages, decreased numbers of M1-type (p < 0.05) and increased numbers of M2-type macrophages (p < 0.0001). Vascular endothelial growth factor (VEGF) expression in ischemic limbs was significantly elevated with hiPSC-SMC treatment (p < 0.05), and inhibition of VEGFR-2 with SU5416 was associated with fewer capillaries in hiPSC-SMC-treated limbs (p < 0.0001). hiPSC-SMC promote VEGF-mediated angiogenesis, leading to improved hindlimb ischemia. Stem cell therapy using iPSC-derived cells may represent a novel and potentially translatable therapy for limb-threatening ischemia.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Holger A. Russ ◽  
Limor Landsman ◽  
Christopher L. Moss ◽  
Roger Higdon ◽  
Renee L. Greer ◽  
...  

Current approaches in human embryonic stem cell (hESC) to pancreatic beta cell differentiation have largely been based on knowledge gained from developmental studies of the epithelial pancreas, while the potential roles of other supporting tissue compartments have not been fully explored. One such tissue is the pancreatic mesenchyme that supports epithelial organogenesis throughout embryogenesis. We hypothesized that detailed characterization of the pancreatic mesenchyme might result in the identification of novel factors not used in current differentiation protocols. Supplementing existing hESC differentiation conditions with such factors might create a more comprehensive simulation of normal development in cell culture. To validate our hypothesis, we took advantage of a novel transgenic mouse model to isolate the pancreatic mesenchyme at distinct embryonic and postnatal stages for subsequent proteomic analysis. Refined sample preparation and analysis conditions across four embryonic and prenatal time points resulted in the identification of 21,498 peptides with high-confidence mapping to 1,502 proteins. Expression analysis of pancreata confirmed the presence of three potentially important factors in cell differentiation: Galectin-1 (LGALS1), Neuroplastin (NPTN), and the Lamininα-2 subunit (LAMA2). Two of the three factors (LGALS1 and LAMA2) increased expression of pancreatic progenitor transcript levels in a published hESC to beta cell differentiation protocol. In addition, LAMA2 partially blocks cell culture induced beta cell dedifferentiation. Summarily, we provide evidence that proteomic analysis of supporting tissues such as the pancreatic mesenchyme allows for the identification of potentially important factors guiding hESC to pancreas differentiation.


Sign in / Sign up

Export Citation Format

Share Document