Gastrointestinal nematode control practices in ewes: Identification of factors associated with application of control methods known to influence anthelmintic resistance development

Author(s):  
Eiry Gwenllian Williams ◽  
Peter M. Brophy ◽  
Hefin Wyn Williams ◽  
Nia Davies ◽  
Rhys Aled Jones
2011 ◽  
Vol 64 (1) ◽  
pp. 4 ◽  
Author(s):  
Thomas Patten ◽  
Barbara Good ◽  
James P Hanrahan ◽  
Grace Mulcahy ◽  
Theo de Waal

2019 ◽  
Vol 28 (3) ◽  
pp. 339-345
Author(s):  
Alexandra Martins dos Santos Soares ◽  
Lêdia Feitosa Wanderley ◽  
Livio Martins Costa Junior

Abstract Gastrointestinal nematode infection is an important cause of high economic losses in livestock production. Nematode control based on a synthetic chemical approach is considered unsustainable due to the increasing incidence of anthelmintic resistance. Control alternatives such as the use of natural products are therefore becoming relevant from an environmental and economic point of view. Proteins are macromolecules with various properties that can be obtained from a wide range of organisms, including plants and fungi. Proteins belonging to different classes have shown great potential for the control of nematodes. The action of proteins can occur at specific stages of the nematode life cycle, depending on the composition of the external layers of the nematode body and the active site of the protein. Advances in biotechnology have resulted in the emergence of numerous protein and peptide therapeutics; however, few have been discussed with a focus on the control of animal nematodes. Here, we discuss the use of exogenous proteins and peptides in the control of gastrointestinal.


Parasitology ◽  
2007 ◽  
Vol 134 (8) ◽  
pp. 1087-1092 ◽  
Author(s):  
ROGER K. PRICHARD

SUMMARYBenzimidazole (BZ) resistance is widespread and appears to be readily selected in a variety of nematode parasites of animals. There have been reports of a lack of efficacy of BZ anthelmintics against soil transmitted nematode parasites of humans. However, resistance to BZs in nematodes of humans has not been confirmed. It is difficult to perform tests to confirm anthelmintic resistance in humans for a variety of technical and ethical reasons. The use of anthelmintic drugs for the control of helminth parasites in people is increasing massively as a result of numerous programmes to control gastrointestinal nematode parasites in children, the Global Program for the Elimination of Lymphatic Filariasis and other programmes. Many of these programmes are dependent on BZ anthelmintics and this will increase the pressure for resistance development to BZ anthelmintics in nematode parasites of people. We need to perform monitoring for anthelmintic resistance in these programmes and we need new tools to make that monitoring sensitive, inexpensive and practical. There is a real need for DNA-based markers for BZ resistance in nematode parasites of humans. We have a reasonable understanding of the molecular mechanisms and genetics of BZ resistance in some nematode parasites of animals and similar mechanisms are likely to prevail in nematodes of humans. Based on the likelihood that similar single nucleotide polymorphisms (SNPs) will be involved in BZ resistance in human, as in animal nematode parasites, rapid SNP assays have been developed for possible BZ resistance development in Wuchereria bancrofti.


Author(s):  
Livio M. Costa-Junior ◽  
Umer N. Chaudhry ◽  
Philip J. Skuce ◽  
Seamus Stack ◽  
Neil D. Sargison

AbstractDevelopment of sustainable gastrointestinal nematode (GIN) control strategies depends on the ability to identify the frequencies of drug-susceptible and resistant genotypes in GIN populations arising from management practices undertaken on individual farms. Resistance to BZ drugs in GINs has been shown to be conferred by the presence of defined SNPs in the isotype 1 β-tubulin locus. Loop-mediated isothermal amplification (LAMP) assays are amenable to use on a range of DNA templates and are potentially adaptable to use in practical, cost-effective, pen-side diagnostic platforms that are needed to detect anthelmintic resistance in the field. In this study, we designed primers and examined LAMP assays to detect each of the three major isotype 1 β-tubulin SNPs conferring genetic susceptibility to BZ drugs. We used artificial pools of synthetic DNA, containing different proportions of susceptible and resistant SNPs to determine reproducibility of the assays. We demonstrated the detection of each of the isotype 1 β-tubulin SNPs conferring susceptibility to BZ drugs using the optimal LAMP assay. Isotype 1 β-tubulin SNP typing was effective in detecting BZ susceptibility, but the accuracy was reduced in samples with less than 60 % susceptible DNA. Our results show the potential for LAMP SNP typing to detect genetic susceptibility or resistance to anthelmintic drugs in livestock GINs, and some of the limitations in our approach that will need to be overcome in order to evaluate this assay using field samples.


2018 ◽  
Vol 51 (3) ◽  
pp. 555-563
Author(s):  
Morutse Mphahlele ◽  
Ana M. Tsotetsi-Khambule ◽  
Rebone Moerane ◽  
Majela L. Mashiloane ◽  
Oriel M. M. Thekisoe

1997 ◽  
Vol 73 (1-2) ◽  
pp. 105-117 ◽  
Author(s):  
J. Zinsstag ◽  
Ph. Ankers ◽  
P. Itty ◽  
M. Njie ◽  
J. Kaufmann ◽  
...  

Author(s):  
F.A. Herrera-Manzanilla ◽  
N.F. Ojeda-Robertos ◽  
R. González-Garduño ◽  
R. Cámara-Sarmiento ◽  
J.F.J. Torres-Acosta

2020 ◽  
Vol 31 (3) ◽  
pp. 145-159
Author(s):  
Haladu Ali Gagman ◽  
Nik Ahmad Irwan Izzauddin Nik Him ◽  
Hamdan Ahmad ◽  
Shaida Fariza Sulaiman ◽  
Rahmad Zakaria ◽  
...  

Gastrointestinal nematode infections can cause great losses in revenue due to decrease livestock production and animal death. The use of anthelmintic to control gastrointestinal nematode put a selection pressure on nematode populations which led to emergence of anthelmintic resistance. Because of that, this study was carried out to investigate the efficacy of aqueous and methanol extract of Cassia siamea against the motility of C. elegans Bristol N2 and C. elegans DA1316. Caenorhabditis elegans Bristol N2 is a susceptible strain and C. elegans DA1316 is an ivermectin resistant strain. In vitro bioassay of various concentrations of (0.2, 0.6, 0.8, 1.0 and 2.0 mg mL–1) aqueous and methanol extracts of C. siamea was conducted against the motility of L4 larvae of C. elegans Bristol N2 and C. elegans DA1316. The L4 larvae were treated with 0.02 μg mL–1 of ivermectin served as positive control while those in M9 solution served as negative control. The activity of the extracts was observed after 24 h and 48 h. A significant difference was recorded in the extract performance compared to control at (P < 0.001) after 48 h against the motility of the larvae of both strains. The methanol extracts inhibited the motility of C. elegans Bristol N2 by 86.7% as well as DA1316 up to 84.9% at 2.0 mg mL–1 after 48 h. The methanol extract was more efficient than aqueous extract (P < 0.05) against the motility of both strains of C. elegans. Cassia siamea may be used as a natural source of lead compounds for the development of alternative anthelmintic against parasitic nematodes as well ivermectin resistant strains of nematodes.


2021 ◽  
Vol 99 (Supplement_2) ◽  
pp. 36-37
Author(s):  
Joan M Burke ◽  
James E Miller

Abstract Multi-species grazing, alternate grazing of cattle with sheep or goats, offers benefits to gastrointestinal nematode (GIN) control as GIN species differ between hosts. In the Southeastern United States, common GIN species of cattle include Cooperia spp., Ostertagia ostertagi, Haemonchus spp., whereas species of sheep and goats are Haemonchus contortus, Teladorsagia circumcincta, Trichostrongylus spp., Cooperia curticei, and Oesophagostomum spp. Anthelmintic resistance is widely prevalent in small ruminants, and is an increasing problem in cattle, but remains less prevalent. Thus, it is recommended to farmers to use a multi-faceted approach of GIN control, including multi-species grazing. Because management differs between cattle and small ruminants in regard to copper tolerance in minerals, predator control and fencing, alternate grazing of species has most commonly been used. Other considerations include age or susceptibility to GIN, as young calves may be vulnerable to GIN, but mature cows often have negligible GIN infection. Similarly, weanling lambs and kids are susceptible, and depending on breed, adults range from highly resistant to susceptible. Research indicates that GIN burden of more resistant animals is less influenced by multi-species grazing, and highly susceptible animals will likely need additional measures of control. The more resistant species used in the multi-species grazing may lend more control to the more susceptible. Some research showed reductions in O. ostertagi, but not C. oncophora in cattle during extended grazing of cattle and sheep, and reductions of H. contortus and T. colubriformis in sheep. However, other research reported similar worm burdens. Weight gains were improved in lambs grazed alternately with cattle in some studies, and most studies showed little benefit to cattle. Little has been published on alternate grazing with cattle and goats. The complex interactions, larger plot sizes needed, and time required to complete experiments limits published studies of this important management scheme.


Sign in / Sign up

Export Citation Format

Share Document