scholarly journals Numerical Investigation of Analytical Models of Drug Flux Through Microporated Skin

2019 ◽  
Vol 108 (1) ◽  
pp. 358-363 ◽  
Author(s):  
Arsenii M. Pavlov ◽  
Alexey S. Rzhevskiy ◽  
Yuri G. Anissimov
Author(s):  
C. Brüggemann ◽  
M. Schatz ◽  
D. M. Vogt ◽  
F. Popig

This paper presents a numerical investigation of the impact of different part-span connector (PSC) configurations on the flow field in a turbine passage. For this purpose a linear cascade based on a profile section of a typical reaction blade used in industrial steam turbines was modeled and 3D simulations with varying size, shape, axial position and yaw incidence angle of the PSC were performed. Air modeled as ideal gas was chosen as the working fluid. Apart from a sensitivity study of the above mentioned parameters on the losses incurred by PSCs based on the numerical results, a detailed investigation of the flow field was carried out to highlight the interaction with the incoming flow. Moreover, the variation of the flow field behind the cascade was examined to assess the impact on the subsequent blade row. It is shown that depending on the geometry and the position of the PSC, different vortex structures are established in the wakes. These wakes interact with the main flow in the passage, thus influencing both dissipation and the downstream flow field. Major changes of the wake flow character and extent could be observed. Comparisons of the CFD results against commonly used analytical loss correlations for PSC revealed large differences, especially as certain parameters such as the yaw incidence angle are generally not considered by the latter. As a consequence, the analytical models need to be improved and extended. The results of this study indicate that the possibility of reducing the losses incurred by PSC by careful selection of design parameters within the design space dictated by its mechanical constraints.


2018 ◽  
Vol 17 (3) ◽  
pp. 275-294
Author(s):  
M Ebrahem ◽  
S Manzoor ◽  
NA Sheikh ◽  
Muzaffar Ali ◽  
MM Khan

In this study, the numerical investigation of free dynamic response of a rigid, symmetric airfoil having two coupled degrees of freedom is performed. The airfoil is excited using two different mechanisms. Firstly, a mechanical excitation scenario is simulated using initial conditions for both the degrees of freedom. Dynamic airfoil response in terms of amplitudes of oscillation is recorded under no flow as well as uniform upstream flow conditions. In the second scenario, an upstream flow perturbation is introduced in the form of a gust superimposed on the otherwise uniform in-flow. Transient energy amplification behavior of the airfoil under both scenarios is monitored. The findings are presented in terms of dimensionless aerodynamic coefficients, oscillations amplitudes, and total energy of the airfoil. Detailed comparisons of the experimental data and results obtained using analytical models are developed and discussed using a very simple simulation methodology.


2018 ◽  
Vol 38 (1) ◽  
pp. 57-66
Author(s):  
Michał Grenda

Abstract Demand for thin-walled structures has been increasing for many years. Cold- formed, thin-walled channel beams are the subject of presented research. The local elastic buckling and limit load of these beams subjected to pure bending are investigated. This study includes numerical investigation called the Finite Strip Method (FSM). The presented results give a deep insight into behaviour of such beams and may be used to validate analytical models. The number of works devoted to the theory of thin-walled structures has been steadily growing in recent years. It means that is an increasing interest in practical methods of manufacturing cold-formed thin-walled beams with complicated cross-sections, including also beams with web stiffeners. The ratio of transverse dimensions of beam to its wall-thickness is high, therefore, thin-walled beams are prone to local buckling that may interact with other buckling modes. The stability constraints should be always considered when using cold-formed thin-walled beams.


2020 ◽  
Vol 21 (6) ◽  
pp. 610
Author(s):  
Xiaoliang Cheng ◽  
Chunyang Zhao ◽  
Hailong Wang ◽  
Yang Wang ◽  
Zhenlong Wang

Microwave cutting glass and ceramics based on thermal controlled fracture method has gained much attention recently for its advantages in lower energy-consumption and higher efficiency than conventional processing method. However, the irregular crack-propagation is problematic in this procedure, which hinders the industrial application of this advanced technology. In this study, the irregular crack-propagation is summarized as the unstable propagation in the initial stage, the deviated propagation in the middle stage, and the non-penetrating propagation in the end segment based on experimental work. Method for predicting the unstable propagation in the initial stage has been developed by combining analytical models with thermal-fracture simulation. Experimental results show good agreement with the prediction results, and the relative deviation between them can be <5% in cutting of some ceramics. The mechanism of deviated propagation and the non-penetrating propagation have been revealed by simulation and theoretical analysis. Since this study provides effective methods to predict unstable crack-propagation in the initial stage and understand the irregular propagation mechanism in the whole crack-propagation stage in microwave cutting ceramics, it is of great significance to the industrial application of thermal controlled fracture method for cutting ceramic materials using microwave.


1996 ◽  
Vol 8 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Ken Bartley

This paper discusses the need for nationally based analytical models of the medieval period. The use of cluster analysis as a method for classifying demesne farms, by the crops they grew and their livestock management, is explained. Successful implementation of cluster analysis requires both the existence of a large base sample, to permit isolation of specific groupings within the data, and access to considerable processing time. The paper concludes by demonstrating how discriminant analysis can provide an efficient and systematic way of classifying even a single manor within a national frame of reference.


2016 ◽  
Vol 136 (3) ◽  
pp. 141-146 ◽  
Author(s):  
Akira Kawasaki ◽  
Kenichi Kubota ◽  
Ikkoh Funaki ◽  
Yoshihiro Okuno

Sign in / Sign up

Export Citation Format

Share Document