Medial temporal fMRI activation reflects memory lateralization and memory performance in patients with epilepsy

2008 ◽  
Vol 12 (3) ◽  
pp. 410-418 ◽  
Author(s):  
Jennifer Vannest ◽  
Jerzy P. Szaflarski ◽  
Michael D. Privitera ◽  
Bruce K. Schefft ◽  
Scott K. Holland
2021 ◽  
Vol 11 (2) ◽  
pp. 261
Author(s):  
Frank J. van Schalkwijk ◽  
Walter R. Gruber ◽  
Laurie A. Miller ◽  
Eugen Trinka ◽  
Yvonne Höller

Memory complaints are frequently reported by patients with epilepsy and are associated with seizure occurrence. Yet, the direct effects of seizures on memory retention are difficult to assess given their unpredictability. Furthermore, previous investigations have predominantly assessed declarative memory. This study evaluated within-subject effects of seizure occurrence on retention and consolidation of a procedural motor sequence learning task in patients with epilepsy undergoing continuous monitoring for five consecutive days. Of the total sample of patients considered for analyses (N = 53, Mage = 32.92 ± 13.80 y, range = 18–66 y; 43% male), 15 patients experienced seizures and were used for within-patient analyses. Within-patient contrasts showed general improvements over seizure-free (day + night) and seizure-affected retention periods. Yet, exploratory within-subject contrasts for patients diagnosed with temporal lobe epilepsy (n = 10) showed that only seizure-free retention periods resulted in significant improvements, as no performance changes were observed following seizure-affected retention. These results indicate general performance improvements and offline consolidation of procedural memory during the day and night. Furthermore, these results suggest the relevance of healthy temporal lobe functioning for successful consolidation of procedural information, as well as the importance of seizure control for effective retention and consolidation of procedural memory.


1999 ◽  
Vol 37 (1) ◽  
pp. 13-24 ◽  
Author(s):  
Anne Elixhauser ◽  
Nancy Kline Leidy ◽  
Kimford Meador ◽  
Eugene Means ◽  
Mary Kaye Willian

GeroPsych ◽  
2014 ◽  
Vol 27 (4) ◽  
pp. 161-169 ◽  
Author(s):  
Nienke A. Hofrichter ◽  
Sandra Dick ◽  
Thomas G. Riemer ◽  
Carsten Schleussner ◽  
Monique Goerke ◽  
...  

Hippocampal dysfunction and deficits in episodic memory have been reported for both Alzheimer’s disease (AD) and major depressive disorder (MDD). Primacy performance has been associated with hippocampus-dependent episodic memory, while recency may reflect working memory performance. In this study, serial position profiles were examined in a total of 73 patients with MDD, AD, both AD and MDD, and healthy controls (HC) by means of CERAD-NP word list memory. Primacy performance was most impaired in AD with comorbid MDD, followed by AD, MDD, and HC. Recency performance, on the other hand, was comparable across groups. These findings indicate that primacy in AD is impaired in the presence of comorbid MDD, suggesting additive performance decrements in this specific episodic memory function.


2006 ◽  
Vol 20 (2) ◽  
pp. 68-78 ◽  
Author(s):  
Sibylle Heinze ◽  
Gudrun Sartory ◽  
Bernhard W. Müller ◽  
Armin de Greiff ◽  
Michael Forsting ◽  
...  

Neuroimaging studies have indicated involvement of left prefrontal cortex and temporal areas in verbal memory processes. The current study used event-related functional neuroimaging to compare encoding of subsequently recalled and not recalled words in high and low memory performers. Fifteen healthy volunteers were given lists of words to learn with immediate recall and to read as a control condition. High performers reported to have visualized the words whereas low performers used a rehearsal strategy. Compared to reading, unsuccessful encoding was associated with thalamic and left premotor area (BA 6) activity. Comparing successful with unsuccessful learning yielded widespread activity of the left prefrontal and posterior temporal gyrus as well as the left superior parietal lobe in the whole group. Low performers showed activation of the left premotor area throughout learning and additionally of the left middle temporal and parahippocampal gyrus during successful encoding. High performers showed increased activation in the extrastriate cortex throughout learning and additionally in the left parietal post- and paracentral areas as well as in the right precuneus during successful encoding. The results suggest that high verbal memory performance is the result of spatiovisual activation concomitant to imagery and low performance of hippocampal and motor activation, the latter being associated with rehearsal, with a common memory circuit subserving both groups.


2010 ◽  
Vol 218 (2) ◽  
pp. 135-140 ◽  
Author(s):  
Slawomira J. Diener ◽  
Herta Flor ◽  
Michèle Wessa

Impairments in declarative memory have been reported in posttraumatic stress disorder (PTSD). Fragmentation of explicit trauma-related memory has been assumed to impede the formation of a coherent memorization of the traumatic event and the integration into autobiographic memory. Together with a strong non-declarative memory that connects trauma reminders with a fear response the impairment in declarative memory is thought to be involved in the maintenance of PTSD symptoms. Fourteen PTSD patients, 14 traumatized subjects without PTSD, and 13 non-traumatized healthy controls (HC) were tested with the California Verbal Learning Test (CVLT) to assess verbal declarative memory. PTSD symptoms were assessed with the Clinician Administered PTSD Scale and depression with the Center of Epidemiological Studies Depression Scale. Several indices of the CVLT pointed to an impairment in declarative memory performance in PTSD, but not in traumatized persons without PTSD or HC. No group differences were observed if recall of memory after a time delay was set in relation to initial learning performance. In the PTSD group verbal memory performance correlated significantly with hyperarousal symptoms, after concentration difficulties were accounted for. The present study confirmed previous reports of declarative verbal memory deficits in PTSD. Extending previous results, we propose that learning rather than memory consolidation is impaired in PTSD patients. Furthermore, arousal symptoms may interfere with successful memory formation in PTSD.


2016 ◽  
Vol 30 (2) ◽  
pp. 76-86 ◽  
Author(s):  
Judith Meessen ◽  
Verena Mainz ◽  
Siegfried Gauggel ◽  
Eftychia Volz-Sidiropoulou ◽  
Stefan Sütterlin ◽  
...  

Abstract. Recently, Garfinkel and Critchley (2013) proposed to distinguish between three facets of interoception: interoceptive sensibility, interoceptive accuracy, and interoceptive awareness. This pilot study investigated how these facets interrelate to each other and whether interoceptive awareness is related to the metacognitive awareness of memory performance. A sample of 24 healthy students completed a heartbeat perception task (HPT) and a memory task. Judgments of confidence were requested for each task. Participants filled in questionnaires assessing interoceptive sensibility, depression, anxiety, and socio-demographic characteristics. The three facets of interoception were found to be uncorrelated and interoceptive awareness was not related to metacognitive awareness of memory performance. Whereas memory performance was significantly related to metamemory awareness, interoceptive accuracy (HPT) and interoceptive awareness were not correlated. Results suggest that future research on interoception should assess all facets of interoception in order to capture the multifaceted quality of the construct.


2014 ◽  
Vol 28 (3) ◽  
pp. 148-161 ◽  
Author(s):  
David Friedman ◽  
Ray Johnson

A cardinal feature of aging is a decline in episodic memory (EM). Nevertheless, there is evidence that some older adults may be able to “compensate” for failures in recollection-based processing by recruiting brain regions and cognitive processes not normally recruited by the young. We review the evidence suggesting that age-related declines in EM performance and recollection-related brain activity (left-parietal EM effect; LPEM) are due to altered processing at encoding. We describe results from our laboratory on differences in encoding- and retrieval-related activity between young and older adults. We then show that, relative to the young, in older adults brain activity at encoding is reduced over a brain region believed to be crucial for successful semantic elaboration in a 400–1,400-ms interval (left inferior prefrontal cortex, LIPFC; Johnson, Nessler, & Friedman, 2013 ; Nessler, Friedman, Johnson, & Bersick, 2007 ; Nessler, Johnson, Bersick, & Friedman, 2006 ). This reduced brain activity is associated with diminished subsequent recognition-memory performance and the LPEM at retrieval. We provide evidence for this premise by demonstrating that disrupting encoding-related processes during this 400–1,400-ms interval in young adults affords causal support for the hypothesis that the reduction over LIPFC during encoding produces the hallmarks of an age-related EM deficit: normal semantic retrieval at encoding, reduced subsequent episodic recognition accuracy, free recall, and the LPEM. Finally, we show that the reduced LPEM in young adults is associated with “additional” brain activity over similar brain areas as those activated when older adults show deficient retrieval. Hence, rather than supporting the compensation hypothesis, these data are more consistent with the scaffolding hypothesis, in which the recruitment of additional cognitive processes is an adaptive response across the life span in the face of momentary increases in task demand due to poorly-encoded episodic memories.


2006 ◽  
Vol 11 (4) ◽  
pp. 304-311 ◽  
Author(s):  
Lars-Göran Nilsson

This paper presents four domains of markers that have been found to predict later cognitive impairment and neurodegenerative disease. These four domains are (1) data patterns of memory performance, (2) cardiovascular factors, (3) genetic markers, and (4) brain activity. The critical features of each domain are illustrated with data from the longitudinal Betula Study on memory, aging, and health ( Nilsson et al., 1997 ; Nilsson et al., 2004 ). Up to now, early signs regarding these domains have been examined one by one and it has been found that they are associated with later cognitive impairment and neurodegenerative disease. However, it was also found that each marker accounts for only a very small part of the total variance, implying that single markers should not be used as predictors for cognitive decline or neurodegenerative disease. It is discussed whether modeling and simulations should be used as tools to combine markers at different levels to increase the amount of explained variance.


Sign in / Sign up

Export Citation Format

Share Document