Non-residual Sr of the sediments in Daihai Lake as a good indicator of chemical weathering

2013 ◽  
Vol 79 (2) ◽  
pp. 284-291 ◽  
Author(s):  
Yan Zeng ◽  
Jingan Chen ◽  
Jule Xiao ◽  
Liang Qi

AbstractThe Rb/Sr ratio of lake sediments has been demonstrated to be a potential indicator of chemical weathering by increasing work. However, Rb and Sr in lake sediments are derived from both chemical weathering and physical erosion. Rb and Sr of different forms in lake sediments may record different environmental processes and information. In this study, the variation patterns of Rb and Sr of different forms in sediments of Daihai Lake were investigated. The results show that Rb and Sr of different forms display noticeably different variation patterns due to their different sources and associated environmental processes. Using the Rb/Sr ratios of bulk lake sediments to reflect chemical weathering is not accurate. The non-residual Sr of the sediments without detrital carbonates, representing the Sr leached from the catchment, can be used as an index of chemical weathering because the weathering of Sr minerals is very sensitive to climate change, and the non-residual Sr content of the sediment is determined more by Sr2 + influx than by the physicochemical conditions of lake water. The correspondence between the non-residual Sr and TIC/TOC in Daihai Lake also indicates that the non-residual Sr of the sediments is a good indicator of chemical weathering in the catchment.

2021 ◽  
Author(s):  
Anthony Dosseto ◽  
Nathalie Vigier ◽  
Renaud Joannes-Boyau ◽  
Ian Moffat ◽  
Tejpal Singh ◽  
...  

Chemical weathering of continental rocks plays a central role in regulating the carbon cycle and the Earth’s climate (Walker et al., 1981; Berner et al., 1983), accounting for nearly half the consumption of atmospheric carbon dioxide globally (Beaulieu et al., 2012). However, the role of climate variability on chemical weathering is still strongly debated. Here we focus on the Himalayan range and use the lithium isotopic composition of clays in fluvial terraces to show a tight coupling between climate change and chemical weathering over the past 40 ka. Between 25 and 10 ka ago, weathering rates decrease despite temperature increase and monsoon intensification. This suggests that at this timescale, temperature plays a secondary role compared to runoff and physical erosion, which inhibit chemical weathering by accel-erating sediment transport and act as fundamental controls in determining the feedback between chemical weathering and atmospheric carbon dioxide.


1998 ◽  
Vol 37 (2) ◽  
pp. 177-185 ◽  
Author(s):  
Hany Hassan ◽  
Keisuke Hanaki ◽  
Tomonori Matsuo

Global climate change induced by increased concentrations of greenhouse gases (especially CO2) is expected to include changes in precipitation, wind speed, incoming solar radiation, and air temperature. These major climate variables directly influence water quality in lakes by altering changes in flow and water temperature balance. High concentration of nutrient enrichment and expected variability of climate can lead to periodic phytoplankton blooms and an alteration of the neutral trophic balance. As a result, dissolved oxygen levels, with low concentrations, can fluctuate widely and algal productivity may reach critical levels. In this work, we will present: 1) recent results of GCMs climate scenarios downscaling project that was held at the University of Derby, UK.; 2) current/future comparative results of a new mathematical lake eutrophication model (LEM) in which output of phytoplankton growth rate and dissolved oxygen will be presented for Suwa lake in Japan as a case study. The model parameters were calibrated for the period of 1973–1983 and validated for the period of 1983–1993. Meterologic, hydrologic, and lake water quality data of 1990 were selected for the assessment analysis. Statistical relationships between seven daily meteorological time series and three airflow indices were used as a means for downscaling daily outputs of Hadley Centre Climate Model (HadCM2SUL) to the station sub-grid scale.


2021 ◽  
Author(s):  
Marttiina V. Rantala ◽  
Carsten Meyer-Jacob ◽  
E. Henriikka Kivilä ◽  
Tomi P. Luoto ◽  
Antti. E. K. Ojala ◽  
...  

AbstractGlobal environmental change alters the production, terrestrial export, and photodegradation of organic carbon in northern lakes. Sedimentary biogeochemical records can provide a unique means to understand the nature of these changes over long time scales, where observational data fall short. We deployed in situ experiments on two shallow subarctic lakes with contrasting light regimes; a clear tundra lake and a dark woodland lake, to first investigate the photochemical transformation of carbon and nitrogen elemental (C/N ratio) and isotope (δ13C, δ15N) composition in lake water particulate organic matter (POM) for downcore inferences. We then explored elemental, isotopic, and spectral (inferred lake water total organic carbon [TOC] and sediment chlorophyll a [CHLa]) fingerprints in the lake sediments to trace changes in aquatic production, terrestrial inputs and photodegradation before and after profound human impacts on the global carbon cycle prompted by industrialization. POM pool in both lakes displayed tentative evidence of UV photoreactivity, reflected as increasing δ13C and decreasing C/N values. Through time, the tundra lake sediments traced subtle shifts in primary production, while the woodland lake carried signals of changing terrestrial contributions, indicating shifts in terrestrial carbon export but possibly also photodegradation rates. Under global human impact, both lakes irrespective of their distinct carbon regimes displayed evidence of increased productivity but no conspicuous signs of increased terrestrial influence. Overall, sediment biogeochemistry can integrate a wealth of information on carbon regulation in northern lakes, while our results also point to the importance of considering the entire spectrum of photobiogeochemical fingerprints in sedimentary studies.


2021 ◽  
Author(s):  
Jorge Tamayo ◽  
Ernesto Rodriguez-Camino ◽  
Sara Covaleda

<p>The intersectoral workshop held in December 2016 among the Ibero-American networks on water (CODIA), climate change (RIOCC) and meteorology (CIMHET) identified the need to dispose of downscaled climate change scenarios for Central America. Such scenarios would be developed by National Meteorological and Hydrological Services (NMHS) in the region, based on a common methodology, allowing the assessment of climate change impacts on water resources and extreme hydro-meteorological events.</p><p>One final outcome of the project has been a freely accessible web viewer, installed on the Centro Clima webpage (https://centroclima.org/escenarios-cambio-climatico/), managed by CRRH-SICA, where all information generated during the project is available for consultation and data downloading by the different sectors of users.</p><p>A key element in this project has been to integrate many downscaled projections based on different methods (dynamical and statistical), totalizing 45 different projections, and aiming at estimating the uncertainty coming from different sources in the best possible way.</p><p>Another essential element has been the strong involvement of the different user sectors through national workshops, first, at the beginning of the project for the identification and definition of viewer features the project, and then for the presentation of results and planning of its use by prioritized sectors.</p><p>In a second phase of the project, a regional working group made up of experts from the NMHSs will be in charge of viewer maintenance and upgrade, including new sectoral parameters, developed in collaboration with interested users, and computation and addition of new downscaled projections from CMIP 6 in collaboration with AEMET.</p><p>Finally, following the request of CIMHET, the possibility of replicating this project for other areas of Ibero-America is being evaluated.</p>


2021 ◽  
Author(s):  
Weihan Jia ◽  
Kathleen Stoof-Leichsenring ◽  
Sisi Liu ◽  
Kai Li ◽  
Sichao Huang ◽  
...  

<p>Lake sedimentary DNA (<em>sed</em>DNA) is an established tool to trace past changes in vegetation composition and plant diversity. However, little is known about the relationships between sedimentary plant DNA and modern vegetational and environmental conditions. In this study, we investigate i) the relationships between the preservation of sedimentary plant DNA and environmental variables, ii) the modern analogue of ancient plant DNA assemblages archived in lake sediments, and iii) the usability of sedimentary plant DNA for characterization of terrestrial and aquatic plant composition and diversity based on a large dataset of PCR-amplified plant DNA data retrieved from 259 lake surface sediments from the Tibetan Plateau and Siberia. Our results indicate the following: i) Lake-water electrical conductivity and pH are the most important variables for the preservation of plant DNA in lake sediments. We expect the best preservation conditions for sedimentary plant DNA in small deep lakes characterized by high water conductivities (≥100 μS cm<sup>-1</sup>) and neutral to slightly alkaline pH conditions (7–9). ii) Plant DNA metabarcoding is promising for palaeovegetation reconstruction in high mountain regions, where shifts in vegetation are solely captured by the <em>sed</em>DNA-based analogue matching and fossil pollen generally has poor modern analogues. However, the biases in the representation of some taxa could lead to poor analogue conditions. iii) Plant DNA metabarcoding is a reliable proxy to reflect modern vegetation types and climate characteristics at a sub-continental scale. However, the resolution of the <em>trn</em>L P6 loop marker, the incompleteness of the reference library, and the extent of <em>sed</em>DNA preservation are still the main limitations of this method. iv) Plant DNA metabarcoding is a suitable proxy to recover modern aquatic plant diversity, which is mostly affected by July temperature and lake-water conductivity. Ongoing warming might decrease macrophyte richness in the Tibetan Plateau and Siberia, and ultimately threaten the health of these important freshwater ecosystems. To conclude, sedimentary plant DNA presents a high correlation with modern vegetation and may therefore be an important proxy for reconstruction of past vegetation.</p>


2020 ◽  
Vol 77 (11) ◽  
pp. 1836-1845
Author(s):  
K. Martin Perales ◽  
Catherine L. Hein ◽  
Noah R. Lottig ◽  
M. Jake Vander Zanden

Climate change is altering hydrologic regimes, with implications for lake water levels. While lakes within lake districts experience the same climate, lakes may exhibit differential climate vulnerability regarding water level response to drought. We took advantage of a recent drought (∼2005–2010) and estimated changes in lake area, water level, and shoreline position on 47 lakes in northern Wisconsin using high-resolution orthoimagery and hypsographic curves. We developed a model predicting water level response to drought to identify characteristics of the most vulnerable lakes in the region, which indicated that low-conductivity seepage lakes found high in the landscape, with little surrounding wetland and highly permeable soils, showed the greatest water level declines. To explore potential changes in the littoral zone, we estimated coarse woody habitat (CWH) loss during the drought and found that drainage lakes lost 0.8% CWH while seepage lakes were disproportionately impacted, with a mean loss of 40% CWH. Characterizing how lakes and lake districts respond to drought will further our understanding of how climate change may alter lake ecology via water level fluctuations.


Sign in / Sign up

Export Citation Format

Share Document