Phytolith and diatom evidence for rice exploitation and environmental changes during the early mid-Holocene in the Yangtze Delta

2016 ◽  
Vol 86 (3) ◽  
pp. 304-315 ◽  
Author(s):  
Xinxin Zuo ◽  
Houyuan Lu ◽  
Zhen Li ◽  
Bing Song ◽  
Deke Xu ◽  
...  

AbstractUsing phytolith analysis from a well-dated and high-resolution sediment sequence in the apex of northern Yangtze Delta, we investigate environmental changes, the rise and decline of rice exploitation and possible impacts of environment on rice exploitation during the early mid-Holocene. The phytolith sequence documents a relatively warm and dry interval during ca.9000 to 8200 cal yr BP, followed by climatic amelioration before 7200 cal yr BP. Phytolith evidence indicates that rice exploitation at the apex of northern Yangtze Delta began at 8200 cal yr BP, flourished by 7700 cal yr BP and ceased after 7400 cal yr BP. The first emergence of marine diatom species approximately 7300 cal yr BP likely indicates an accelerated sea-level rise. The apparent correlation of the initiation of rice exploitation with climatic amelioration during the early mid-Holocene suggests that climatic changes may have played an important role in facilitating rice exploitation. Both the ideal climatic conditions and stable sea level enabled flourishing rice exploitation during 8200 to 7400 cal yr BP. Although the climate remained warm and wet after 7400 cal yr BP, local sea-level rise possibly led to the termination of earlier rice exploitation at this site of the northern Yangtze Delta.

The Holocene ◽  
2018 ◽  
Vol 29 (1) ◽  
pp. 26-44 ◽  
Author(s):  
Manel Leira ◽  
Maria C Freitas ◽  
Tania Ferreira ◽  
Anabela Cruces ◽  
Simon Connor ◽  
...  

We examine the Holocene environmental changes in a wet dune slack of the Portuguese coast, Poço do Barbarroxa de Baixo. Lithology, organic matter, biological proxies and high-resolution chronology provide estimations of sediment accumulation rates and changes in environmental conditions in relation to sea-level change and climate variability during the Holocene. Results show that the wet dune slack was formed 7.5 cal. ka BP, contemporaneous with the last stages of the rapid sea-level rise. This depositional environment formed under frequent freshwater flooding and water ponding that allowed the development and post-mortem accumulation of abundant plant remains. The wetland evolved into mostly palustrine conditions over the next 2000 years, until a phase of stabilization in relative sea-level rise, when sedimentation rates slowed down to 0.04 mm yr−1, between 5.3 and 2.5 cal. ka BP. Later, about 0.8 cal. ka BP, high-energy events, likely due to enhanced storminess and more frequent onshore winds, caused the collapse of the foredune above the wetlands’ seaward margin. The delicate balance between hydrology (controlled by sea-level rise and climate change), sediment supply and storminess modulates the habitat’s resilience and ecological stability. This underpins the relevance of integrating past records in coastal wet dune slacks management in a scenario of constant adaptation processes.


Climate ◽  
2019 ◽  
Vol 7 (5) ◽  
pp. 69 ◽  
Author(s):  
Rabeya Akter ◽  
Tansir Zaman Asik ◽  
Mohiuddin Sakib ◽  
Marin Akter ◽  
Mostofa Najmus Sakib ◽  
...  

Salinity intrusion through the estuaries in low-lying tide-dominated deltas is a serious threat that is expected to worsen in changing climatic conditions. This research makes a comparative analysis on the impact of salinity intrusion due to a reduced upstream discharge, a sea level rise, and cyclonic conditions to find which one of these event dominates the salinity intrusion. A calibrated and validated salinity model (Delft3D) and storm surge model (Delft Dashboard) are used to simulate the surface water salinity for different climatic conditions. Results show that the effects of the reduced upstream discharge, a sea level rise, and cyclones cause different levels of impacts in the Ganges-Brahmaputra-Meghna (GBM) delta along the Bangladesh coast. Reduced upstream discharge causes an increased saltwater intrusion in the entire region. A rising sea level causes increased salinity in the shallower coast. The cyclonic impact on saltwater intrusion is confined within the landfall zone. These outcomes suggest that, for a tide dominated delta, if a sea level rise (SLR) or cyclone occurred, the impact would be conditional and local. However, if the upstream discharge reduces, the impact would be gradual and along the entire coast.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9186 ◽  
Author(s):  
Nikolas J. Kaplanis ◽  
Clinton B. Edwards ◽  
Yoan Eynaud ◽  
Jennifer E. Smith

The impacts of sea-level rise (SLR) are likely to be the greatest for ecosystems that exist at the land-sea interface, where small changes in sea-level could result in drastic changes in habitat availability. Rocky intertidal ecosystems possess a number of characteristics which make them highly vulnerable to changes in sea-level, yet our understanding of potential community-scale responses to future SLR scenarios is limited. Combining remote-sensing with in-situ large-area imaging, we quantified habitat extent and characterized the biological community at two rocky intertidal study locations in California, USA. We then used a model-based approach to estimate how a range of SLR scenarios would affect total habitat area, areal extent of dominant benthic space occupiers, and numerical abundance of invertebrates. Our results suggest that SLR will reduce total available rocky intertidal habitat area at our study locations, leading to an overall decrease in areal extent of dominant benthic space occupiers, and a reduction in invertebrate abundances. As large-scale environmental changes, such as SLR, accelerate in the next century, more extensive spatially explicit monitoring at ecologically relevant scales will be needed to visualize and quantify their impacts to biological systems.


2011 ◽  
Vol 76 (2) ◽  
pp. 229-242 ◽  
Author(s):  
Denis Wirrmann ◽  
Anne-Marie Sémah ◽  
Jean-Pierre Debenay ◽  
Magali Chacornac-Rault

AbstractMultiproxy analysis of three littoral cores from western New Caledonia supports the hypothesis that the main controlling factors of environmental changes are sea-level change, ENSO variability and extra-tropical phenomena, such as the Medieval Warm Period (MWP) marked by a tendency for La Niña-like conditions in the tropical Pacific. The record starts during the late Holocene sea-level rise when the terrestrial vegetation indicated wet and cool conditions. The site was a coastal bay definitely transformed into a freshwater swamp at around 3400 cal yr BP, after the rapid drawdown of sea level to its current level. Sediments and foraminiferal assemblages indicated subsequent episodes of freshwater infillings, emersion or very high-energy conditions, likely related to climatic changes and mostly controlled by ENSO variability. Between 2750 and 2000 cal yr BP, relatively dry and cool climate prevailed, while wetter conditions predominated between ca. 1800 and 900 cal yr BP. The Rhizophoraceae peak between ca. 1080 and 750 cal yr BP, coeval with the MWP, may indicate a global phenomenon. Microcharcoal particles present throughout the record increased after 1500 cal yr BP, suggesting an anthropogenic source. From ca. 750 cal yr BP the appearance of current type of vegetation marks the human impact.


Author(s):  
Ashley M. Smallwood ◽  
Albert C. Goodyear ◽  
Thomas A. Jennings ◽  
Douglas A. Sain

The state of South Carolina is examined by the physiographic provinces of Mountains, Piedmont, and Coastal Plain using established Paleoindian projectile point types and their geographic distributions by raw materials. Foraging ranges are reconstructed. There is a substantial drop in post-Clovis point frequencies, as seen elsewhere in the Southeast, with a great increase by Dalton times. Younger Dryas age environmental changes are reviewed, with late Pleistocene flora and fauna changes noted. Starting in Dalton times, sea level rise appears to have affected settlement strategies due to the inundation of the primary resource habitats of the Coastal Plain. The Piedmont Transhumance hypothesis is offered as an explanation of these changes.


2021 ◽  
Author(s):  
Cindy Palinkas ◽  
Lorie Staver

<p>Living shorelines, defined in this study as narrow marsh fringes with adjacent sills, have been gaining traction as the preferred management strategy to mitigate shoreline erosion. These nature-based features provide the same ecosystem services as natural marshes while protecting coastlines. However, they also are threatened by the same environmental changes (sea-level rise, changing sediment supply) as natural marshes and may change characteristics of adjacent subtidal sediments. This study evaluates the role of plants in both the created marshes of living shorelines and, where present, beds of submersed aquatic vegetation (SAV) in the adjacent subtidal in the effectiveness, impacts, and resiliency of living shorelines over ~10 years in mesohaline Chesapeake Bay. At study sites, there is a net seaward movement of shorelines with living shoreline installation due to construction technique. This movement replaces shallow-water habitat immediately adjacent to the pre-existing shoreline; farther offshore, sedimentological changes vary among sites but do not appear to drive changes in the presence/absence of subtidal SAV. While current accretion rates in the created marshes are greater than local relative sea-level rise, there is evidence that accretion rates increase with marsh age, suggesting that living shorelines are most vulnerable in the first few years after installation. Because nutrient burial is maximized when SAV occur next to living shorelines, a management strategy that considers the subtidal and intertidal as integrated components of the coastal system is needed to optimize co-benefits of coastal protection.</p>


CATENA ◽  
2016 ◽  
Vol 143 ◽  
pp. 187-200 ◽  
Author(s):  
Marcelo Cancela Lisboa Cohen ◽  
Rubén José Lara ◽  
Elvira Cuevas ◽  
Eneilis Mulero Oliveras ◽  
Leonel Da Silveira Sternberg

2014 ◽  
Vol 21 (1) ◽  
pp. 61 ◽  
Author(s):  
Julie Koppel Maldonado

Environmental changes, such as sea level rise, are forcibly displacing communities around the world. Forced displacement, inadequate governance mechanisms to address relocation and economic-based adaptation and restoration efforts are leading to devastating social, cultural, health, and economic consequences for the people and communities affected. This article focuses on three tribal communities in coastal Louisiana that are experiencing rapid environmental change and risk of displacement due to historical discriminatory processes, oil and dam-related development projects, oil disasters, increased exposure to hurricanes, and relative sea level rise. Focusing on the political ecology of the communities' experiences of environmental change, including the impacts of displacement and decisions to stay in-place vs. relocate, this paper addresses broader issues of adaptive governance structures and policy implications. Building on Bronen's (2011) rights-based approach to adaptation and Shearer's (2012) approach to a political ecology of adaptation, I argue that governance structures should be put in place that support communities' in-situ adaptation efforts or, if the community decides its current location is no longer inhabitable, to assist community-led relocation efforts. Multiple forms of knowledge should be incorporated into and should inform the structures supporting the adaptation process. I highlight the social, political, environmental and economic context within which environmental changes are occurring in coastal Louisiana through discussion on the loss of the commons, the creation of an energy sacrifice zone, costbenefit based restoration efforts and forced displacement and relocation.Key words: Environmental change, displacement, relocation, adaptation


Sign in / Sign up

Export Citation Format

Share Document