Sequence-specific DNA damage induced by ultraviolet A-irradiated folic acid via its photolysis product

2003 ◽  
Vol 410 (2) ◽  
pp. 261-268 ◽  
Author(s):  
Kazutaka Hirakawa ◽  
Hiroyuki Suzuki ◽  
Shinji Oikawa ◽  
Shosuke Kawanishi
2006 ◽  
Vol 17 (4) ◽  
pp. 1758-1767 ◽  
Author(s):  
Miriam Grosse Hovest ◽  
Nicole Brüggenolte ◽  
Kijawasch Shah Hosseini ◽  
Thomas Krieg ◽  
Gernot Herrmann

Cellular senescence is a phenotype that is likely linked with aging. Recent concepts view different forms of senescence as permanently maintained DNA damage responses partially characterized by the presence of senescence-associated DNA damage foci at dysfunctional telomeres. Irradiation of primary human dermal fibroblasts with the photosensitizer 8-methoxypsoralen and ultraviolet A radiation (PUVA) induces senescence. In the present study, we demonstrate that senescence after PUVA depends on DNA interstrand cross-link (ICL) formation that activates ATR kinase. ATR is necessary for the manifestation and maintenance of the senescent phenotype, because depletion of ATR expression before PUVA prevents induction of senescence, and reduction of ATR expression in PUVA-senesced fibroblasts releases cells from growth arrest. We find an ATR-dependent phosphorylation of the histone H2AX (γ-H2AX). After PUVA, ATR and γ-H2AX colocalize in multiple nuclear foci. After several days, only few predominantly telomere-localized foci persist and telomeric DNA can be coimmunoprecipitated with ATR from PUVA-senesced fibroblasts. We thus identify ATR as a novel mediator of telomere-dependent senescence in response to ICL induced by photoactivated psoralens.


Author(s):  
Breanne G. Swayne ◽  
Alice Kawata ◽  
Nathalie A. Behan ◽  
Andrew Williams ◽  
Mike G. Wade ◽  
...  
Keyword(s):  

2011 ◽  
Vol 105 (9) ◽  
pp. 1294-1302 ◽  
Author(s):  
Ta-Fu Chen ◽  
Ming-Jang Chiu ◽  
Chou-Tz Huang ◽  
Ming-Chi Tang ◽  
Sue-Jane Wang ◽  
...  

Accumulating evidence suggests that changes in dietary folate intake may modulate the risks of Alzheimer's disease (AD) through as yet unknown mechanisms. The aims of the present study were to investigate how dietary folate affects the brain folate distribution, levels of oxidised lipid and DNA damage in the absence/presence of β-amyloid(25–35)(Aβ) peptide challenge, a pathogenic hallmark of AD. Male Wistar rats were assigned to diets with folic acid at 0 (folate deprivation; FD), 8 (moderate folate; MF) and 8 mg folic acid/kg diet+0·003 % in drinking-water (folate supplementation; FS) for 4 weeks. A single injection of Aβ peptide (1 mg/ml) or the vehicle solution was intracerebroventricularly (icv) administrated to rats a week before killing. Brain folate, a marker of oxidative injury, and neuronal death were assayed. In the absence of an Aβ injection, FD rats showed reduced folate levels, and increased 2-thiobarbituric acid-reactive substances and a mitochondrial (mt)DNA 4834 bp large deletion (mtDNA4834deletion) in the hippocampus compared with the counterpart brains of control rats (P < 0·05). A single icv injection of Aβ peptide potentiated lipid peroxidation in the medulla of FD rats, which was ameliorated by feeding FD rats with the MF and FS diets (P < 0·05). Feeding the FS diet to Aβ-injected rats enriched brain folate levels and reduced mtDNA4834deletion in the hippocampal and medullary regions compared with corresponding tissues of Aβ+FD rats (P < 0·05). Aβ+FS rats had reduced rates of neuronal death in the frontal cortex compared with Aβ+FD rats (P < 0·05). Taken together, our data revealed that folate deprivation differentially depleted brain folate levels, and increased lipid peroxidation and mtDNA4834deletions, particularly, in the hippocampus. Upon Aβ challenge, the FS diet may protect various brain regions against lipid peroxidation, mitochondrial genotoxicity and neural death associated with folate deprivation.


2018 ◽  
Vol 37 (12) ◽  
pp. 1258-1267
Author(s):  
Y Chen ◽  
H Feng ◽  
D Chen ◽  
K Abuduwaili ◽  
X Li ◽  
...  

The protective effects of folic acid on DNA damage and DNA methylation induced by N-methyl- N′-nitro- N-nitrosoguanidine (MNNG) in Kazakh esophageal epithelial cells were investigated using a 3 × 3 factorial design trial. The cells were cultured in vitro and exposed to media containing different concentrations of folic acid and MNNG, after which growth indices were detected. DNA damage levels were measured using comet assays, and genome-wide DNA methylation levels (MLs) were measured using high-performance liquid chromatography. The DNA methylation of methylenetetrahydrofolate reductase (MTHFR) and folate receptor- α (FR α) genes was detected by bisulfite sequencing polymerase chain reaction (PCR). The results showed significant increases in tail DNA concentration, tail length, and Olive tail moment ( p < 0.01); a significant reduction of genome-wide DNA MLs ( p < 0.01); and an increase in the methylation frequencies of MTHFR and FR α genes. In particular, significant differences were observed in the promoter regions of both genes ( p < 0.01). Our study indicated that a reduction in folic acid concentration promotes DNA damage and DNA methylation in Kazakh esophageal epithelial cells upon MNNG exposure. Thus, sufficient folic acid levels could play a protective role against the damage induced by this compound.


2004 ◽  
Vol 44 (2) ◽  
pp. 151-155 ◽  
Author(s):  
Baoying Zheng ◽  
Huey-Min Hwang ◽  
Hongtao Yu ◽  
Stephen Ekunwe
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document