scholarly journals Histomorphometric study of trabecular bone of experimental model for bone resorption in rats.

1991 ◽  
Vol 55 ◽  
pp. 237
Author(s):  
Hideaki Ogura ◽  
Kazuhiro Aoki ◽  
Keiichi Ohya
1990 ◽  
Vol 259 (5) ◽  
pp. E715-E722
Author(s):  
D. D. Bikle ◽  
B. P. Halloran ◽  
C. McGalliard-Cone ◽  
E. Morey-Holton

Previous studies regarding the effects of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] on bone have suggested that 1,25(OH)2D3 increases bone mass and calcium. Many of these studies have focused on trabecular or total bone without examining cortical bone per se. To determine whether the response of trabecular bone to 1,25(OH)2D3 differed from the response of cortical bone, we infused 1,25(OH)2D3 into rats and examined bone mass, 45Ca accumulation, and the density distribution of bone particles (as a measure of bone maturation) in both the proximal tibia and shaft. In the proximal tibia 1,25(OH)2D3 decreased 45Ca accumulation, yet increased bone mass and shifted the particle distribution to more mineralized fractions. In the shaft there was a redistribution of bone to less mineralized fractions that was not accompanied by a change in total bone mass or a decrease in 45Ca accumulation. Thus 1,25(OH)2D3 may retard bone maturation and mineralization throughout the tibia, but this effect in the proximal tibia appears to be overshadowed by a reduction in bone resorption resulting in an accumulation of well-mineralized bone in that region. Bone resorption, however, was not measured directly. The net result is an increase in bone mass and density of trabecular bone not seen in cortical bone.


1986 ◽  
Vol 251 (4) ◽  
pp. E400-E406 ◽  
Author(s):  
P. J. Marie ◽  
L. Cancela ◽  
N. Le Boulch ◽  
L. Miravet

The effects of pregnancy and lactation on endosteal bone formation and resorption were evaluated in vitamin D-depleted (-D) and vitamin D-repleted (+D) rats. Pregnancy induced a marked stimulation of osteoclastic bone resorption and of static and dynamic parameters of bone formation and mineralization. Bone resorption increased independently of vitamin D status and did not correlate with plasma 1,25-dihydroxyvitamin D3 [1,25(OH)2D] levels, but it was associated with increased plasma immunoreactive parathyroid hormone (iPTH) concentrations. Stimulation of the endosteal bone formation rate was mainly impaired in D-depleted rats, resulting in trabecular bone loss, which, in -D mother rats, was associated with decreased bone ash and total bone calcium. Lactation further stimulated bone resorption and reduced the trabecular bone volume; ash weight and bone calcium content were also decreased independently of the vitamin D status and changes in plasma iPTH levels. In presence of vitamin D, the bone formation rate increased fourfold during lactation but was unchanged in -D lactating rats. During lactation, vitamin D-depleted rats lost twofold more calcified bone than +D rats because of impaired mineralization. Thus, the present study shows that both the endosteal bone resorption and formation are stimulated by pregnancy and lactation and that vitamin D is required for normal bone mineralization during the reproductive period.


2018 ◽  
Vol 238 (1) ◽  
pp. 13-23 ◽  
Author(s):  
Thomas Funck-Brentano ◽  
Karin H Nilsson ◽  
Robert Brommage ◽  
Petra Henning ◽  
Ulf H Lerner ◽  
...  

WNT signaling is involved in the tumorigenesis of various cancers and regulates bone homeostasis. Palmitoleoylation of WNTs by Porcupine is required for WNT activity. Porcupine inhibitors are under development for cancer therapy. As the possible side effects of Porcupine inhibitors on bone health are unknown, we determined their effects on bone mass and strength. Twelve-week-old C57BL/6N female mice were treated by the Porcupine inhibitors LGK974 (low dose = 3 mg/kg/day; high dose = 6 mg/kg/day) or Wnt-C59 (10 mg/kg/day) or vehicle for 3 weeks. Bone parameters were assessed by serum biomarkers, dual-energy X-ray absorptiometry, µCT and histomorphometry. Bone strength was measured by the 3-point bending test. The Porcupine inhibitors were well tolerated demonstrated by normal body weight. Both doses of LGK974 and Wnt-C59 reduced total body bone mineral density compared with vehicle treatment (P < 0.001). Cortical thickness of the femur shaft (P < 0.001) and trabecular bone volume fraction in the vertebral body (P < 0.001) were reduced by treatment with LGK974 or Wnt-C59. Porcupine inhibition reduced bone strength in the tibia (P < 0.05). The cortical bone loss was the result of impaired periosteal bone formation and increased endocortical bone resorption and the trabecular bone loss was caused by reduced trabecular bone formation and increased bone resorption. Porcupine inhibitors exert deleterious effects on bone mass and strength caused by a combination of reduced bone formation and increased bone resorption. We suggest that cancer targeted therapies using Porcupine inhibitors may increase the risk of fractures.


2010 ◽  
Vol 22 (7) ◽  
pp. 727-734 ◽  
Author(s):  
Ma Piedad Ramírez-Fernández ◽  
Jose Luis Calvo-Guirado ◽  
Rafael Arcesio Delgado-Ruiz ◽  
José Eduardo Maté-Sánchez del Val ◽  
Gerardo Gómez-Moreno ◽  
...  

2011 ◽  
Vol 15 (1) ◽  
pp. 143-151 ◽  
Author(s):  
Jose Luis Calvo Guirado ◽  
Maria Piedad Ramírez Fernández ◽  
Bruno Negri ◽  
Rafael Arcesio Delgado Ruiz ◽  
José Eduardo Maté Sánchez de‐Val ◽  
...  

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 15-16
Author(s):  
Jing Fu ◽  
Shirong Li ◽  
Huihui Ma ◽  
Jun Yang ◽  
Gabriel M. Pagnotti ◽  
...  

Introduction Multiple myeloma (MM) bone disease remains one of the most devastating complications of this incurable cancer, causing bone fractures, pain, mobility issues and neurological deficits. MM cells produce osteoclast-activating factors that induce osteoclast activation, thereby leading to excessive bone resorption and lytic bone lesions1. Our previous work demonstrated that matrix metalloproteinase 13 (MMP-13) is a critical osteoclastogenic factor that is highly secreted by MM cells. MMP-13 induces osteoclast fusion and bone-resorption via a mechanism independent of its proteolytic activity2. We recently reported that MMP-13 binds to checkpoint inhibitor programmed death-1 homolog (PD-1H/VISTA), a surface receptor that is expressed in osteoclasts at high levels3. Binding of MMP-13 to PD-1H/VISTA induces osteoclast fusion and bone resorption activity whereas knockdown or knockout of PD-1H/VISTA largely block MMP-13 mediated effects on osteoclasts3. However, the function of PD-1H inMM bone disease in vitro or in vivo has not been previously defined. Methods and Results To confirm the role of PD-1H in MMP-13 induced bone disease in MM, we first conducted MM-osteoclast trans-well co-culture assay using murine MM cell line, 5TGM1 cells, and bone marrow mononuclear cells from Pd-1h-/- or wild type (WT) mice. 5TGM1 control cells or MMP-13 knockdown 5TGM1 cells were seeded in the upper wells of the transwell plates; while WT or Pd-1h-/- bone marrow mononuclear cells were seeded in the lower wells and cultured for osteoclast differentiation assessed by TRAP staining. Results show that 5TGM1 induced differentiation of WT osteoclasts with significantly increased osteoclast size and nuclei number/osteoclast. Consistent with our previous results2, MMP-13 knockdown blocked the 5TGM1 MM cells-induced activation of WT osteoclasts. In contrast, neither 5TGM1 MM cells nor MMP-13 knockdown cells had significant effects on Pd-1h-/- osteoclasts. Hence, knockout of Pd-1h abrogated MMP-13 mediated MM induction of osteoclasts, indicating that MMP-13/PD-1H interactions are critically involved in MM-induced osteoclast activation. The in vivo role of PD-1H in MM bone disease was investigated using the intratibial 5TGM1 Rag2-/- MM bone disease mice model2. For this purpose, Pd-1h-/-Rag2-/- mice were generated by crossbreeding C57BL/6 Pd-1h-/- with C57BL/6 Rag2-/- mice. 3x105 firefly luciferase expressing 5TGM1 cells (5TGM1-luc) were intratibially injected into age and sex-paired Rag2-/- or Pd-1h-/-Rag2-/- mice (N=5). Tumor progression was monitored by weekly bioluminescence imaging (BLI). 3 weeks after tumor inoculation, tibiae were harvested for quantitative micro-CT, followed by histological analysis. Histological staining showed that intratibial injection of 5TGM1-luc MM cells induced extensive lytic lesions and trabecular bone loss in Rag2-/- mice. In contrast, in Pd-1h-/-Rag2-/- mice,the bone structure was maintained with markedly less bone loss. Morphological analyses of trabecular bone across proximal tibiae further indicated that in Rag2-/- mice, 5TGM1 induced significant changes in bone microarchitecture, with decreased bone volume fraction (bone volume/tissue volume), connective density, trabecular bone numbers, and trabecular bone thickness, as well as increased trabecular bone spacing (Table 1). In contrast, in Pd-1h-/-Rag2-/- mice, 5TGM1 failed to induce significant loss of trabecular bone, confirming the critical role of PD-1H in MM induced bone disease in vivo. Conclusions Taken together, our study, for the first time, reveal that checkpoint inhibitor PD-1H/VISTA is the critical receptor for MMP-13 in osteoclasts, thereby mediating MMP-13-induced osteoclast fusion, activation and bone resorption. MM-induced trabecular bone loss was significantly lower in Pd-1h-/-mice, demonstrating that PD-1H/VISTA plays a critical role in MMP-13-induced MM bone disease. Given the checkpoint role of PD-1H/VISTA in cancer immunosuppression, we further posit that targeting the interaction of MMP-13 and PD-1H may represent a novel therapeutic strategy to treat MM bone disease and modulate the MM immune environment. References 1. Marino S, Petrusca DN, Roodman GD. Br J Pharmacol. 2019;10.1111/bph.14889. 2. Fu J, Li S, Feng R, et al. J Clin Invest. 2016;126(5):1759-1772. 3. Fu J, Li S, Yang C, et al. Blood. 2019; 134 (Supplement_1): 3072. Disclosures Lentzsch: Caelum Biosciences: Current equity holder in private company, Membership on an entity's Board of Directors or advisory committees; Janssen: Consultancy; Celularity: Consultancy, Other; Magenta: Current equity holder in private company; Karyopharm: Research Funding; Mesoblast: Divested equity in a private or publicly-traded company in the past 24 months.


2019 ◽  
Vol 52 (1) ◽  
pp. 13
Author(s):  
Amiyatun Naini ◽  
I Ketut Sudiana ◽  
Mohammad Rubianto ◽  
Utari Kresnoadi ◽  
Faurier Dzar Eljabbar Latief

Background: Damage to bone tissue resulting from tooth extraction will cause alveolar bone resorption. Therefore, a material for preserving alveolar sockets capable of maintaining bone is required. Hydroxyapatite Gypsum Puger (HAGP) is a bio-ceramic material that can be used as an alternative material for alveolar socket preservation. The porous and rough surface of HAGP renders it a good medium for osteoblast cells to penetrate and attach themselves to. In general, bone mass is regulated through a remodeling process consisting of two phases, namely; bone formation by osteoblasts and bone resorption by osteoclasts. Purpose: This research aims to identify the effects of HAGP scaffold application on the number of osteoblasts and osteoclasts, as well as on the width of trabecular bone area in the alveolar sockets of rats. Methods: This research used Posttest Only Control Group Design. There were three research groups, namely: a group with 2.5% HAGP scaffold, a group with 5% HAGP scaffold and a group with 10% HAGP scaffold. The number of samples in each group was six. HAGP scaffold at concentrations of 2.5%, 5% and 10% was then mixed with PEG (Polyethylene Glycol). The Wistar rats were anesthetized intra-muscularly with 100 mg/ml of ketamine and 20 mg/ml of xylazine base at a ratio of 1:1 with a dose of 0.08-0.2 ml/kgBB. Extraction of the left mandibular incisor was performed before 0.1 ml preservation of HAGP scaffold + PEG material was introduced into the extraction sockets and suturing was performed. 7 days after preparation of the rat bone tissue, an Hematoxilin Eosin staining process was conducted in order that observation under a microscope could be performed. Results: There were significant differences in both the number of osteoclasts and osteoblasts between the 2.5% HAGP group, the 5% HAGP group and the 10% HAGP group (p = 0.000). Similarly, significant differences in the width of the trabecular bone area existed between the 5% HAGP group and the 10% HAGP group, as well as between the 2.5% HAGP group and the 10% HAGP group (p=0.000). In contrast, there was no significant difference in the width of the trabecular bone area between the 2.5% HAGP group and the 5% HAGP group. Conclusion: The application of HAGP scaffold can reduce osteoclasts, increase osteoblasts and extend the trabecular area in the alveolar bone sockets of rats.


Sign in / Sign up

Export Citation Format

Share Document