scholarly journals Binding of urinary protein C inhibitor to cultured human epithelial kidney tumor cells (TCL-598). The role of glycosaminoglycans present on the luminal cell surface.

1994 ◽  
Vol 269 (20) ◽  
pp. 14705-14710
Author(s):  
U. Priglinger ◽  
M. Geiger ◽  
E. Bielek ◽  
E. Vanyek ◽  
B.R. Binder
1994 ◽  
Vol 8 ◽  
pp. 63
Author(s):  
U. Priglinger ◽  
M. Geiger ◽  
E. Bielek ◽  
E. Vanvek ◽  
B.R. Binder

1991 ◽  
Vol 30 (06) ◽  
pp. 290-293 ◽  
Author(s):  
P. Maleki ◽  
A. Martinezi ◽  
M. C. Crone-Escanye ◽  
J. Robert ◽  
L. J. Anghileri

The study of the interaction between complexed iron and tumor cells in the presence of 67Ga-citrate indicates that a phenomenon of iron-binding related to the thermodynamic constant of stability of the iron complex, and a hydrolysis (or anion penetration) of the interaction product determine the uptake of 67Ga. The effects of various parameters such as ionic composition of the medium, nature of the iron complex, time of incubation and number of cells are discussed.


1988 ◽  
Vol 107 (6) ◽  
pp. 2437-2445 ◽  
Author(s):  
L Ossowski

The ability of the chick embryo chorioallantoic membrane (CAM) to withstand invasion by tumor cells can be intentionally compromised by altering its morphological integrity. Using a newly developed quantitative assay of invasion we showed that intact CAMs were completely resistant to invasion by tumor cells, wounded CAMs did not pose a barrier to penetration, and CAMs that were wounded and then allowed to reseal displayed partial susceptibility to invasion. The invasion of resealed CAMs required catalytically active plasminogen activator (PA) of the urokinase type (uPA); the invasive efficiency of tumor cells was reduced by 75% when tumor uPA activity or tumor uPA production was inhibited. The invasive ability of human tumor cells, which have surface uPA receptors but which do not produce the enzyme, could be augmented by saturating their receptors with exogenous uPA. The mere stimulation of either uPA or tissue plasminogen activator production, in absence of binding to cell receptors, did not result in an enhancement of invasiveness. These findings suggest that the increased invasive potential of tumor cells is correlated with cell surface-associated proteolytic activity stemming from the interaction between uPA and its surface receptor.


Author(s):  
Qie Guo ◽  
Xiao Li ◽  
Meng-Na Cui ◽  
Jia-Lin Sun ◽  
Hong-Yan Ji ◽  
...  

Cancer is one of the most serious diseases that are harmful to human health. Systemic chemotherapy is an optimal therapeutic strategy for the treatment of cancer, but great difficulty has been encountered in its administration in the form of multidrug resistance (MDR). As an enzyme on the outer cell surface, CD13 is documented to be involved in the MDR development of tumor cells. In this review, we will focus on the role of CD13 in MDR generation based on the current evidence.


1996 ◽  
Vol 75 (05) ◽  
pp. 760-766 ◽  
Author(s):  
Marc G L M Elisen ◽  
Machiel H H Maseland ◽  
Frank C Church ◽  
Bonno N Bouma ◽  
Joost C M Meijers

SummaryInteractions between proteins and heparin(-like) structures involve electrostatic forces and structural features. Based on charge distributions in the linear sequence of protein C inhibitor (PCI), two positively charged regions of PCI were proposed as possible candidates for this interaction. The first region, the A+ helix, is located at the N-terminus (residues 1-11), whereas the second region, the H helix, is positioned between residues 264 and 280 of PCI. Competition experiments with synthetic peptides based on the sequence of these regions demonstrated that the H helix has the highest affinity for heparin. In contrast to previous observations we found that the A+ helix peptide competed for the interaction of PCI with heparin, but its affinity was much lower than that of the H helix peptide.Recombinant PCI was also used to investigate the role of the A+ helix in heparin binding. Full-length (wild-type) rPCI as well as an A+ helix deletion mutant of PCI (rPCI-Δ2-l 1) were expressed in baby hamster kidney cells and both had normal inhibition activity with activated protein C and thrombin. The interaction of the recombinant PCIs with heparin was investigated and compared to plasma PCI. The A+ helix deletion mutant showed a decreased affinity for heparin in inhibition reactions with activated protein C and thrombin, but had similar association constants compared to wild-type rPCI. The synthetic A+ helix peptide competed with rPCI-Δ2-11 for binding to heparin. This indicated that the interaction between PCI and heparin is fairly non-specific and that the interaction is primarily based on electrostatic interactions.In summary, our data suggest that the H helix of PCI is the main heparin binding region of PCI, but the A+ helix increases the overall affinity for the PCI-heparin interaction by contributing a second positively charged region to the surface of PCI.


Blood ◽  
1998 ◽  
Vol 91 (5) ◽  
pp. 1542-1547 ◽  
Author(s):  
Marc G.L.M. Elisen ◽  
Peter A.Kr. von dem Borne ◽  
Bonno N. Bouma ◽  
Joost C.M. Meijers

AbstractProtein C inhibitor (PCI), which was originally identified as an inhibitor of activated protein C, also efficiently inhibits coagulation factors such as factor Xa and thrombin. Recently it was found, using purified proteins, that the anticoagulant thrombin-thrombomodulin complex was also inhibited by PCI. The paradoxical inhibitory effect of PCI on both coagulant and anticoagulant proteases raised questions about the role of PCI in plasma. We studied the role of thrombomodulin (TM)-dependent inhibition of thrombin by PCI in a plasma system. Clotting was induced by addition of tissue factor to recalcified plasma in the absence or presence of TM, and clot formation was monitored using turbidimetry. In the absence of TM, PCI-deficient plasma showed a slightly shorter coagulation time compared with normal plasma. Reconstitution with a physiologic amount of PCI gave normal clotting times. Addition of PCI to normal plasma and protein C–deficient plasma resulted in a minor prolongation of the clotting time. This suggested that PCI can act as a weak coagulation inhibitor in the absence of TM. TM caused a strong anticoagulant effect in normal plasma due to thrombin scavenging and activation of the protein C anticoagulant pathway. This effect was less pronounced when protein C–deficient plasma was used, but could be restored by reconstitution with protein C. When PCI was added to protein C–deficient plasma in the presence of TM, a strong anticoagulant effect of PCI was observed. This anticoagulant effect was most likely caused by the TM-dependent thrombin inhibition by PCI. However, when PCI was added to normal plasma containing TM, a strong procoagulant effect of PCI was observed, due to the inhibition of protein C activation. PCI-deficient plasma was less coagulant in the presence of TM. A concentration-dependent increase in clotting time was observed when PCI-deficient plasma was reconstituted with PCI. The combination of these results suggest that the major function of PCI in plasma during coagulation is the inhibition of thrombin. A decreased generation of activated protein C is a procoagulant consequence of the TM-dependent thrombin inhibition by PCI. We conclude that TM alters PCI from an anticoagulant into a procoagulant during tissue factor-induced coagulation.


Sign in / Sign up

Export Citation Format

Share Document