scholarly journals CD13: A Key Player in Multidrug Resistance in Cancer Chemotherapy

Author(s):  
Qie Guo ◽  
Xiao Li ◽  
Meng-Na Cui ◽  
Jia-Lin Sun ◽  
Hong-Yan Ji ◽  
...  

Cancer is one of the most serious diseases that are harmful to human health. Systemic chemotherapy is an optimal therapeutic strategy for the treatment of cancer, but great difficulty has been encountered in its administration in the form of multidrug resistance (MDR). As an enzyme on the outer cell surface, CD13 is documented to be involved in the MDR development of tumor cells. In this review, we will focus on the role of CD13 in MDR generation based on the current evidence.

1991 ◽  
Vol 30 (06) ◽  
pp. 290-293 ◽  
Author(s):  
P. Maleki ◽  
A. Martinezi ◽  
M. C. Crone-Escanye ◽  
J. Robert ◽  
L. J. Anghileri

The study of the interaction between complexed iron and tumor cells in the presence of 67Ga-citrate indicates that a phenomenon of iron-binding related to the thermodynamic constant of stability of the iron complex, and a hydrolysis (or anion penetration) of the interaction product determine the uptake of 67Ga. The effects of various parameters such as ionic composition of the medium, nature of the iron complex, time of incubation and number of cells are discussed.


2020 ◽  
Vol 11 (11) ◽  
Author(s):  
Chunliang Shang ◽  
Jie Qiao ◽  
Hongyan Guo

AbstractThe pre-metastatic niche is a favorable microenvironment for the colonization of metastatic tumor cells in specific distant organs. Lipid droplets (LDs, also known as lipid bodies or adiposomes) have increasingly been recognized as lipid-rich, functionally dynamic organelles within tumor cells, immune cells, and other stromal cells that are linked to diverse biological functions and human diseases. Moreover, in recent years, several studies have described the indispensable role of LDs in the development of pre-metastatic niches. This review discusses current evidence related to the biogenesis, composition, and functions of LDs related to the following characteristics of the pre-metastatic niche: immunosuppression, inflammation, angiogenesis/vascular permeability, lymphangiogenesis, organotropism, reprogramming. We also address the function of LDs in mediating pre-metastatic niche formation. The potential of LDs as markers and targets for novel antimetastatic therapies will be discussed.


1988 ◽  
Vol 107 (6) ◽  
pp. 2437-2445 ◽  
Author(s):  
L Ossowski

The ability of the chick embryo chorioallantoic membrane (CAM) to withstand invasion by tumor cells can be intentionally compromised by altering its morphological integrity. Using a newly developed quantitative assay of invasion we showed that intact CAMs were completely resistant to invasion by tumor cells, wounded CAMs did not pose a barrier to penetration, and CAMs that were wounded and then allowed to reseal displayed partial susceptibility to invasion. The invasion of resealed CAMs required catalytically active plasminogen activator (PA) of the urokinase type (uPA); the invasive efficiency of tumor cells was reduced by 75% when tumor uPA activity or tumor uPA production was inhibited. The invasive ability of human tumor cells, which have surface uPA receptors but which do not produce the enzyme, could be augmented by saturating their receptors with exogenous uPA. The mere stimulation of either uPA or tissue plasminogen activator production, in absence of binding to cell receptors, did not result in an enhancement of invasiveness. These findings suggest that the increased invasive potential of tumor cells is correlated with cell surface-associated proteolytic activity stemming from the interaction between uPA and its surface receptor.


Author(s):  
Moises Rodriguez-Gonzalez ◽  
Manuel Lubian-Gutierrez ◽  
Helena Maria Cascales-Poyatos ◽  
Alvaro Antonio Perez-Reviriego ◽  
Ana Castellano-Martinez

Dystrophin-deficient cardiomyopathy (DDC) is currently the leading cause of death in patients with dystrophinopathies. Targeting myocardial fibrosis (MF) has become a major therapeutic goal in order to prevent the occurrence of DDC. We aimed to review and summarize the current evidence about the role of the renin-angiotensin-aldosterone system (RAAS) in the development and perpetuation of MF in DCC. We conducted a comprehensive search of peer-reviewed English literature on PubMed about this subject. We found increasing preclinical evidence from studies in animal models during the last 20 years pointing out a central role of RAAS in the development of MF in DDC. Local tissue RAAS acts directly mainly through its main fibrotic component angiotensin II (ANG2) and its transducer receptor (AT1R) and downstream TGF-b pathway. Also, it modulates the actions of most of the remaining pro-fibrotic factors involved in DDC. Despite limited clinical evidence, RAAS blockade constitutes the most studied, available and promising therapeutic strategy against MF and DDC. Conclusion: Based on the evidence reviewed, it would be recommendable to start RAAS blockade therapy through angiotensin converter enzyme inhibitors (ACEI) or AT1R blockers (ARBs) alone or in combination with mineralocorticoid receptor antagonists (MRa) at the youngest age after the diagnosis of dystrophinopathies, in order to delay the occurrence or slow the progression of MF, even before the detection of any cardiovascular alteration.


2001 ◽  
Vol 281 (2) ◽  
pp. C369-C385 ◽  
Author(s):  
Klaus Lange ◽  
Joachim Gartzke

The phenomenon of multidrug resistance (MDR) is reinterpreted on the basis of the recently proposed concept of microvillar signaling. According to this notion, substrate and ion fluxes across the surface of differentiated cells occur via transporters and ion channels that reside in membrane domains at the tips of microvilli (MV). The flux rates are regulated by the actin-based cytoskeletal core structure of MV, acting as a diffusion barrier between the microvillar tip compartment and the cytoplasm. The expression of this diffusion barrier system is a novel aspect of cell differentiation and represents a functional component of the natural defense system of epithelial cells against environmental hazardous ions and lipophilic compounds. Because of the specific organization of epithelial Ca2+ signaling and the secretion, lipophilic compounds associated with the plasma membrane are transferred from the basal to the apical cell surface by a lipid flow mechanism. Drug release from the apical pole occurs by either direct secretion from the cell surface or metabolization by the microvillar cytochrome P-450 system and efflux of the metabolites and conjugation products through the large multifunctional anion channels localized in apical MV. The natural microvillar defense system also provides a mechanistic basis of acquired MDR in tumor cells. The microvillar surface organization is lost in rapidly growing cells such as tumor or embryonic cells but is restored during exposure of tumor cells to cytotoxins by induction of a prolonged G0/G1 resting phase.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Arun Satelli ◽  
Izhar Singh Batth ◽  
Zachary Brownlee ◽  
Christina Rojas ◽  
Qing H. Meng ◽  
...  

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 541-541
Author(s):  
Samir K. Mandal ◽  
Usha R. Pendurthi ◽  
L. Vijaya Mohan Rao

Abstract Tissue factor (TF) is the cellular receptor for clotting factor VIIa (FVIIa) and the formation of TF-FVIIa complexes on cell surfaces triggers the activation of coagulation cascade and cell signaling. TF is constitutively expressed in many extravascular cells, including fibroblasts and pericytes in and surrounding blood vessel walls, and lung epithelial cells. Our recent studies (Blood2006; 107:4746–4753) show that a majority of TF resides in various intracellular compartments, predominantly in the Golgi. FVIIa binding to cell surface TF induces the internalization of TF, and interestingly, mobilizes the Golgi TF pool and transports it to the outer cell surface. This process is dependent on FVIIa protease activity. This present study is aimed to elucidate potential mechanisms involved in TF internalization and the mobilization from the Golgi. Since studies from our laboratory and others showed that TF-FVIIa could activate protease-activated receptor (PAR)-mediated cell signaling and FVIIa protease activity is required for FVIIa-dependent internalization and trafficking of TF, we hypothesize that TF-VIIa activation of PAR1 or PAR2 plays a role in TF internalization and trafficking. To test this hypothesis, we first examined the role of PAR activation in TF-internalization and trafficking. Lung fibroblasts (WI-38 cells) were exposed to a variety of PAR activators, PAR activating peptide agonists (AP) and various proteases, and TF internalization and trafficking was evaluated by measuring the cell surface TF antigen and activity levels, internalization of cell surface TF (by using biotinylation of cell surface receptors and immunoprecipitation techniques) and mobilization of TF from the Golgi (by immunofluorescence confocal microscopy). PAR1 AP and PAR2 AP treatments increased the TF activity and antigen levels at the cell surface by 20 to 50% whereas PAR3 AP and PAR4 AP had no effect on cell surface TF activity and antigen levels. Cell surface TF activity and antigen levels were also increased slightly in fibroblasts exposed to thrombin and trypsin. Confocal microscopic image analysis of distribution of TF and the Golgi protein (golgin-97) revealed that about 85% of the untreated cells possess intact Golgi TF pool with high degree of colocalization with golgin-97 whereas as only 20–30% of FVIIa, thrombin, trypsin, PAR1 AP or PAR2 AP-treated cells had TF pool in the Golgi. Plasmin and FXa had moderate effect on TF mobilization from the Golgi. No detectable differences were found between control (untreated) cells and cells treated with either FFR-FVIIa, APC, PAR3 AP or PAR4 AP. Next, we investigated the role of PAR1 and PAR2 activation in FVIIa-mediated TF internalization and trafficking. Pretreatment of fibroblasts with PAR2 but not PAR1 activation blocking antibodies attenuated FVIIa-mediated Golgi TF mobilization. Consistent with these data, silencing PAR2 receptor by siRNA technique completely blocked FVIIa-mediated Golgi TF mobilization whereas PAR1 siRNA transfection had no effect (in control studies, we showed PAR1 antibodies or PAR1si RNA transfection blocked thrombin-mediated TF mobilization). Additional studies showed a significant internalization of TF in cells exposed to FVIIa which was completely blocked by silencing PAR2 but not PAR1. Overall the data provided herein suggest a novel mechanism by which tissue factor expression is regulated at the cell surface.


2020 ◽  
Vol 22 (1) ◽  
pp. 356
Author(s):  
Moises Rodriguez-Gonzalez ◽  
Manuel Lubian-Gutierrez ◽  
Helena Maria Cascales-Poyatos ◽  
Alvaro Antonio Perez-Reviriego ◽  
Ana Castellano-Martinez

Dystrophin-deficient cardiomyopathy (DDC) is currently the leading cause of death in patients with dystrophinopathies. Targeting myocardial fibrosis (MF) has become a major therapeutic goal in order to prevent the occurrence of DDC. We aimed to review and summarize the current evidence about the role of the renin–angiotensin–aldosterone system (RAAS) in the development and perpetuation of MF in DCC. We conducted a comprehensive search of peer-reviewed English literature on PubMed about this subject. We found increasing preclinical evidence from studies in animal models during the last 20 years pointing out a central role of RAAS in the development of MF in DDC. Local tissue RAAS acts directly mainly through its main fibrotic component angiotensin II (ANG2) and its transducer receptor (AT1R) and downstream TGF-b pathway. Additionally, it modulates the actions of most of the remaining pro-fibrotic factors involved in DDC. Despite limited clinical evidence, RAAS blockade constitutes the most studied, available and promising therapeutic strategy against MF and DDC. Conclusion: Based on the evidence reviewed, it would be recommendable to start RAAS blockade therapy through angiotensin converter enzyme inhibitors (ACEI) or AT1R blockers (ARBs) alone or in combination with mineralocorticoid receptor antagonists (MRa) at the youngest age after the diagnosis of dystrophinopathies, in order to delay the occurrence or slow the progression of MF, even before the detection of any cardiovascular alteration.


Sign in / Sign up

Export Citation Format

Share Document