scholarly journals Location of CD4 dimerization site explains critical role of CDR3-like region in HIV-1 infection and T-cell activation and implies a model for complex of coreceptor-MHC

1993 ◽  
Vol 268 (23) ◽  
pp. 16875-16878
Author(s):  
J.P. Langedijk ◽  
W.C. Puijk ◽  
W.P. van Hoorn ◽  
R.H. Meloen
2019 ◽  
Vol 16 (4) ◽  
pp. 302-314
Author(s):  
Chinnambedu Ravichandran Swathirajan ◽  
Ramachandran Vignesh ◽  
Greer Waldrop ◽  
Uma Shanmugasundaram ◽  
Pannerselvam Nandagopal ◽  
...  

Background:Anti-viral cytokine expressions by cytotoxic T-cells and lower activation rates have been reported to correlate with suppressed HIV replication in long-term non-progressors (LTNP). Immune mechanisms underlying disease non-progression in LTNP might vary with HIV-1 subtype and geographical locations.Objective:This study evaluates cytokine expression and T-cells activation in relation to disease non-progression in LTNP.Methods:HIV-1 Subtype C infected LTNP (n=20) and progressors (n=15) were enrolled and flowcytometry assays were performed to study HIV-specific CD8 T-cells expressing IL-2, IFN-γ, TNF-α and MIP-1β against gag and env peptides. CD4+ T-cell activation was evaluated by surface expression of HLADR and CD38.Results:Proportions of cytokines studied did not differ significantly between LTNP and progressors, while contrasting correlations with disease progression markers were observed in LTNP. CD4+ T-cell activation rates were significantly lower in LTNP compared to progressors which indicate the potential role of T-cell activation rates in disease non-progression in LTNP.Conclusion:LTNP and progressors showed similar CD8+ T-cell responses, but final conclusions can be drawn only by comparing multiple immune factors in larger LTNP cohort with HIV-1 infected individuals at various levels of disease progression. A possible role of HIV-1 subtype variation and ethnic differences in addition to host-genetic and viral factors cannot be ruled out.


AIDS ◽  
2000 ◽  
Vol 14 (9) ◽  
pp. 1079-1089 ◽  
Author(s):  
Andrea Savarino ◽  
Flavia Bottarel ◽  
Fabio Malavasi ◽  
Umberto Dianzani

2020 ◽  
Vol 295 (41) ◽  
pp. 14214-14221
Author(s):  
Zhaoqing Hu ◽  
Lin Li ◽  
Banghui Zhu ◽  
Yi Huang ◽  
Xinran Wang ◽  
...  

T-cell activation is a critical part of the adaptive immune system, enabling responses to foreign cells and external stimulus. In this process, T-cell antigen receptor (TCR) activation stimulates translocation of the downstream kinase PKCθ to the membrane, leading to NF-κB activation and thus transcription of relevant genes. However, the details of how PKCθ is recruited to the membrane remain enigmatic. It is known that annexin A5 (ANXA5), a calcium-dependent membrane-binding protein, has been reported to mediate PKCδ activation by interaction with PKCδ, a homologue of PKCθ, which implicates a potential role of ANXA5 involved in PKCθ signaling. Here we demonstrate that ANXA5 does play a critical role in the recruitment of PKCθ to the membrane during T-cell activation. ANXA5 knockout in Jurkat T cells substantially inhibited the membrane translocation of PKCθ upon TCR engagement and blocked the recruitment of CARMA1-BCL10-MALT1 signalosome, which provides a platform for the catalytic activation of IKKs and subsequent activation of canonical NF-κB signaling in activated T cells. As a result, NF-κB activation was impaired in ANXA5-KO T cells. T-cell activation was also suppressed by ANAX5 knockdown in primary T cells. These results demonstrated a novel role of ANXA5 in PKC translocation and PKC signaling during T-cell activation.


2015 ◽  
Vol 89 (9) ◽  
pp. 4798-4808 ◽  
Author(s):  
Marco Cardone ◽  
Kyojiro N. Ikeda ◽  
Barbara Varano ◽  
Sandra Gessani ◽  
Lucia Conti

ABSTRACTThe interplay between dendritic cells (DC) and γδ T lymphocytes represents a network of paracrine and cell contact interactions important for an integrated immune response to pathogens. HIV-1 infection dramatically affects the number and functions of both cell populations, and DC/γδ T cell cross talk may represent a target of virus-induced immune escape. We investigated whether HIV-exposed DC could deliver aberrant signals to interacting γδ T cells. Here we report that the interaction of human γδ T lymphocytes with HIV-1-exposed autologous monocyte-derived DC, but not direct exposure to the virus, impairs lymphocyte expansion and gamma interferon (IFN-γ) production in response to phosphoantigens. This effect is independent of virus strain and occurred in 55% of the donors analyzed. The donor-dependent variation observed relies on the responsiveness of DC to HIV-1 and is strictly related to the capacity of the virus to suppress the maturation-induced expression of interleukin 12 (IL-12). In fact, γδ T cell response to phosphoantigens is almost completely recovered when this cytokine is exogenously added to the DC/lymphocyte cocultures. Interestingly, we show that γδ T lymphocytes are recruited by HIV-1-exposed DC through a CCR5-mediated mechanism and exert a CCL4-mediated control on virus dissemination within DC and susceptible CD4+T lymphocytes. These results demonstrate an association between HIV-induced DC dysfunction and alterations of γδ T cell responses. The aberrant cross talk between these two cell populations may contribute to the pathogenesis of HIV infection by further reducing the strength of antiviral immune response.IMPORTANCEThis study provides new evidence on the mechanisms exploited by HIV-1 to evade the host immune response. We report that HIV-1 impairs the cross talk between DC and γδ T lymphocytes, by reducing the capacity of DC to promote functional γδ T cell activation. Interestingly, the virus does notper seinterfere with γδ T cell activation, thus highlighting the key role of early DC–HIV-1 interaction in this phenomenon. Furthermore, the results obtained unravel the novel role of γδ T cells in controlling HIV-1 dissemination within the DC population as well as virus transfer to susceptible CD4+T lymphocytes. The interactions of DC with innate lymphocytes represent a major control mechanism for an integrated immune response to infection. Understanding how HIV-1 harnesses these pathways may provide important insights on the pathogenesis of disease and offer new opportunities for therapeutic interventions.


2001 ◽  
Vol 73 (2) ◽  
pp. 139-148 ◽  
Author(s):  
G. Jan Wiegers ◽  
Ilona E.M. Stec ◽  
Wolfgang E.F. Klinkert ◽  
Astrid C.E. Linthorst ◽  
Johannes M.H.M. Reul

2021 ◽  
Vol 12 ◽  
Author(s):  
Jose Luis Santiago ◽  
Luis Sánchez-Pérez ◽  
Isabel Pérez-Flores ◽  
Maria Angeles Moreno de la Higuera ◽  
Natividad Calvo Romero ◽  
...  

The genes CD28, CD86 and CTLA-4 conform the costimulatory (CD28-CD86) or inhibitory (CTLA-4-CD86) signal in T-cell activation. T-cell immune response has a critical role in allograft rejection, and single nucleotide polymorphisms (SNPs) located in these genes have been widely analyzed with controversial results. We analyzed a group of SNPs located in the three genes: CD28: rs3116496; CD86: rs1129055; and CTLA-4: rs231775 and rs3087243 in a cohort of 632 consecutively recruited kidney transplanted subjects. All polymorphisms were genotyped by TaqMan chemistry and the diagnosis of rejection was confirmed by biopsy and categorized according to the Banff classification. The analyses showed a statistically significant protective effect to T cell-mediated rejection (TCMR) in carriers of the CTLA-4 rs3087243*G allele, especially in patients with TCMR Banff ≥2 in the overall cohort and in patients without thymoglobulin induction therapy. Both associations were corroborated as independent factors in the multivariate analysis. Interestingly, associations with rejection were not found for any SNP in patients with thymoglobulin induction therapy. As expected, considering the major role of these genes in T-cell activation, no effect was observed for antibody-mediated rejection (ABMR). In conclusion, the SNP rs3087243 located in the CTLA-4 gene may be considered a useful independent biomarker for TCMR risk especially for severe TCMR in patients who did no received thymoglobulin induction therapy.


2018 ◽  
Vol 89 ◽  
pp. 125-138 ◽  
Author(s):  
Wenjing Yang ◽  
Guangxi Zhou ◽  
Tianming Yu ◽  
Liang Chen ◽  
Lin Yu ◽  
...  

Cells ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 37
Author(s):  
Sarah Schäfer ◽  
Alma Zernecke

Atherosclerotic lesions are populated by cells of the innate and adaptive immune system, including CD8+ T cells. The CD8+ T cell infiltrate has recently been characterized in mouse and human atherosclerosis and revealed activated, cytotoxic, and possibly dysfunctional and exhausted cell phenotypes. In mouse models of atherosclerosis, antibody-mediated depletion of CD8+ T cells ameliorates atherosclerosis. CD8+ T cells control monopoiesis and macrophage accumulation in early atherosclerosis. In addition, CD8+ T cells exert cytotoxic functions in atherosclerotic plaques and contribute to macrophage cell death and necrotic core formation. CD8+ T cell activation may be antigen-specific, and epitopes of atherosclerosis-relevant antigens may be targets of CD8+ T cells and their cytotoxic activity. CD8+ T cell functions are tightly controlled by costimulatory and coinhibitory immune checkpoints. Subsets of regulatory CD25+CD8+ T cells with immunosuppressive functions can inhibit atherosclerosis. Importantly, local cytotoxic CD8+ T cell responses may trigger endothelial damage and plaque erosion in acute coronary syndromes. Understanding the complex role of CD8+ T cells in atherosclerosis may pave the way for defining novel treatment approaches in atherosclerosis. In this review article, we discuss these aspects, highlighting the emerging and critical role of CD8+ T cells in atherosclerosis.


Sign in / Sign up

Export Citation Format

Share Document