scholarly journals Properties and metabolism of fructose diphosphate aldolase in livers of “old” and “young” mice.

1979 ◽  
Vol 254 (17) ◽  
pp. 8179-8184
Author(s):  
J.K. Petell ◽  
H.G. Lebherz
Keyword(s):  
2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Miwa Nahata ◽  
Sachiko Mogami ◽  
Hitomi Sekine ◽  
Seiichi Iizuka ◽  
Naoto Okubo ◽  
...  

AbstractChronic undernutrition contributes to the increase in frailty observed among elderly adults, which is a pressing issue in the sector of health care for older people worldwide. Autophagy, an intracellular recycling system, is closely associated with age-related pathologies. Therefore, decreased autophagy in aging could be involved in the disruption of energy homeostasis that occurs during undernutrition; however, the physiological mechanisms underlying this process remain unknown. Here, we showed that 70% daily food restriction (FR) induced fatal hypoglycemia in 23–26-month-old (aged) mice, which exhibited significantly lower hepatic autophagy than 9-week-old (young) mice. The liver expressions of Bcl-2, an autophagy-negative regulator, and Beclin1–Bcl-2 binding, were increased in aged mice compared with young mice. The autophagy inducer Tat-Beclin1 D11, not the mTOR inhibitor rapamycin, decreased the plasma levels of the glucogenic amino acid and restored the blood glucose levels in aged FR mice. Decreased liver gluconeogenesis, body temperature, physical activity, amino acid metabolism, and hepatic mitochondrial dynamics were observed in the aged FR mice. These changes were restored by treatment with hochuekkito that is a herbal formula containing several autophagy-activating ingredients. Our results indicate that Bcl-2 upregulation in the liver during the aging process disturbs autophagy activation, which increases the vulnerability to undernutrition. The promotion of liver autophagy may offer clinical therapeutic benefits to frail elderly patients.


Author(s):  
Jenny L Gonzalez-Armenta ◽  
Ning Li ◽  
Rae-Ling Lee ◽  
Baisong Lu ◽  
Anthony J A Molina

Abstract Heterochronic parabiosis models have been utilized to demonstrate the role of blood-borne circulating factors in systemic effects of aging. In previous studies, heterochronic parabiosis has shown positive effects across multiple tissues in old mice. More recently, a study demonstrated old blood had a more profound negative effect on muscle performance and neurogenesis of young mice. In this study, we used heterochronic parabiosis to test the hypothesis that circulating factors mediate mitochondrial bioenergetic decline, a well-established biological hallmark of aging. We examined mitochondrial morphology, expression of mitochondrial complexes, and mitochondrial respiration from skeletal muscle of mice connected as heterochronic pairs, as well as young and old isochronic controls. Our results indicate that young heterochronic mice had significantly lower total mitochondrial content and on average had significantly smaller mitochondria compared to young isochronic controls. Expression of complex IV followed a similar pattern: young heterochronic mice had a trend for lower expression compared to young isochronic controls. Additionally, respirometric analyses indicate that young heterochronic mice had significantly lower complex I, complex I + II, and maximal mitochondrial respiration and a trend for lower complex II-driven respiration compared to young isochronic controls. Interestingly, we did not observe significant improvements in old heterochronic mice compared to old isochronic controls, demonstrating the profound deleterious effects of circulating factors from old mice on mitochondrial structure and function. We also found no significant differences between the young and old heterochronic mice, demonstrating that circulating factors can be a driver of age-related differences in mitochondrial structure and function.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Constantinos G. Broustas ◽  
Axel J. Duval ◽  
Sally A. Amundson

AbstractAs a radiation biodosimetry tool, gene expression profiling is being developed using mouse and human peripheral blood models. The impact of dose, dose-rate, and radiation quality has been studied with the goal of predicting radiological tissue injury. In this study, we determined the impact of aging on the gene expression profile of blood from mice exposed to radiation. Young (2 mo) and old (21 mo) male mice were irradiated with 4 Gy x-rays, total RNA was isolated from whole blood 24 h later, and subjected to whole genome microarray analysis. Pathway analysis of differentially expressed genes revealed young mice responded to x-ray exposure by significantly upregulating pathways involved in apoptosis and phagocytosis, a process that eliminates apoptotic cells and preserves tissue homeostasis. In contrast, the functional annotation of senescence was overrepresented among differentially expressed genes from irradiated old mice without enrichment of phagocytosis pathways. Pathways associated with hematologic malignancies were enriched in irradiated old mice compared with irradiated young mice. The fibroblast growth factor signaling pathway was underrepresented in older mice under basal conditions. Similarly, brain-related functions were underrepresented in unirradiated old mice. Thus, age-dependent gene expression differences should be considered when developing gene signatures for use in radiation biodosimetry.


2014 ◽  
Vol 29 (5) ◽  
pp. 1043-1053 ◽  
Author(s):  
Jin-Ran Chen ◽  
Oxana P Lazarenko ◽  
Jian Zhang ◽  
Michael L Blackburn ◽  
Martin JJ Ronis ◽  
...  

Author(s):  
KAYO TANAHASHI ◽  
SHINOBU SHIBAHARA ◽  
MINAKO OGAWA ◽  
MAKOTO HANAZONO ◽  
SHINICHI AIZAWA ◽  
...  

1981 ◽  
Vol 27 (4) ◽  
pp. 341-352 ◽  
Author(s):  
Tsutomu YOSHIDA ◽  
Shoko SHINODA ◽  
Tohru URANO ◽  
Kazuyoshi MAEJIMA

Sign in / Sign up

Export Citation Format

Share Document