Analysis and Test: Impregnated Diamond Cutters for Oil Drilling Bit

2014 ◽  
Vol 496-500 ◽  
pp. 448-451
Author(s):  
Hong Lan ◽  
Qi Xue ◽  
Cheng Yu Cui

Systematic testing methods of the performance of diamond/metal composite drilling segments (impregnated diamond cutters) have not come into being. This article tries to test the mechanical properties, structures and component of a certain number of impregnated diamond cutters; focuses on analysis of the relationship between the performance of typical composite diamond cutters and materials’ structures, intends to study the testing methods of impregnated diamond cutters’ performance.

2013 ◽  
Vol 663 ◽  
pp. 343-348 ◽  
Author(s):  
Shu Hui Dong ◽  
De Cheng Feng ◽  
Shou Heng Jiang ◽  
Wei Zhong Zhu

The pore size distribution and the microstructure of negative temperature concrete was studied with different temperature, combining with some testing methods, such as MIP and SEM. Moreover, the change of the compressive strength was also studied with different ages. In addition, the relationship between the microstructure and the macro-mechanical properties on negative temperature concrete was explored further with different freezing temperature. It indicated that the lower the early curing temperature, the looser the original structure of cement paste; the total volume of gel pore whose pore size was less than 20nm was decreasing apparently, and the compressive strength declined. When changing to standard curing, the pore size trended to be thinner, the compressive strength was increasing sharply. The concrete was cured from -5°C to standard curing, the volume of pore that was less than 200nm was equal to that of the concrete with the standard curing in the age of 28d, so was the compressive strength. However, the volume of the macro pore of the concrete curing under -10°C and -15°C was greater than the concrete curing the standard condition, the compressive strength was less.


2018 ◽  
Vol 69 (05) ◽  
pp. 381-389
Author(s):  
MENGÜÇ GAMZE SÜPÜREN ◽  
TEMEL EMRAH ◽  
BOZDOĞAN FARUK

This study was designed to explore the relationship between sunlight exposure and the mechanical properties of paragliding fabrics which have different colors, densities, yarn counts, and coating materials. This study exposed 5 different colors of paragliding fabrics (red, turquoise, dark blue, orange, and white) to intense sunlight for 150 hours during the summer from 9:00 a.m. to 3:00 p.m. for 5 days a week for 5 weeks. Before and after the UV radiation aging process, the air permeability, tensile strength, tear strength, and bursting strength tests were performed. Test results were also evaluated using statistical methods. According to the results, the fading of the turquoise fabric was found to be the highest among the studied fabrics. It was determined that there is a significant decrease in the mechanical properties of the fabrics after sunlight exposure. After aging, the fabrics become considerably weaker in the case of mechanical properties due to the degradation in both the dyestuff and macromolecular structure of the fiber


Friction ◽  
2021 ◽  
Author(s):  
Shaoqing Xue ◽  
Hanglin Li ◽  
Yumei Guo ◽  
Baohua Zhang ◽  
Jiusheng Li ◽  
...  

AbstractWater is as an economic, eco-friendly, and efficient lubricant that has gained widespread attention for manufacturing. Using graphene oxide (GO)-based materials can improve the lubricant efficacy of water lubrication due to their outstanding mechanical properties, water dispersibility, and broad application scenarios. In this review, we offer a brief introduction about the background of water lubrication and GO. Subsequently, the synthesis, structure, and lubrication theory of GO are analyzed. Particular attention is focused on the relationship between pH, concentration, and lubrication efficacy when discussing the tribology behaviors of pristine GO. By compounding or reacting GO with various modifiers, amounts of GO-composites are synthesized and applied as lubricant additives or into frictional pairs for different usage scenarios. These various strategies of GO-composite generate interesting effects on the tribology behaviors. Several application cases of GO-based materials are described in water lubrication, including metal processing and bio-lubrication. The advantages and drawbacks of GO-composites are then discussed. The development of GO-based materials for water lubrication is described including some challenges.


2018 ◽  
Vol 31 (3) ◽  
pp. 261-272 ◽  
Author(s):  
Yixiang Zhang ◽  
Masahiko Miyauchi ◽  
Steven Nutt

A new polymerized monomeric reactant (PMR)-type polyimide, designated TriA X, was investigated to determine polymer structure, processability, thermal, and mechanical properties and establish the relationship between the molecular structure and those properties. TriA X is a PMR-type polyimide with an asymmetric, irregular, and nonplanar backbone. Both the imide oligomers and the cross-linked polyimides of TriA X exhibited loose-packed amorphous structures, independent of thermal processing. The peculiar structures were attributed to the asymmetric backbone, which effectively prevented the formation of closed-packed chain stacking typically observed in polyimides. The imide oligomers exhibited a lower melt viscosity than a control imide oligomer (symmetric and semi-crystalline), indicating a higher chain mobility above the glass transition temperature ( Tg). The cured polyimide exhibited a Tg = 362°C and a decomposition temperature = 550°C. The cross-linked TriA X exhibited exceptional toughness and ductility (e.g. 15.1% at 23°C) for a polyimide, which was attributed to the high-molecular-weight oligomer and loose-packed amorphous structure. The thermal and mechanical properties of TriA X surpass those of PMR-15 and AFR-PE-4.


e-Polymers ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 713-723
Author(s):  
Wei Gong ◽  
Tuan-Hui Jiang ◽  
Xiang-Bu Zeng ◽  
Li He ◽  
Chun Zhang

AbstractThe effects of the cell size and distribution on the mechanical properties of polypropylene foam were simulated and analyzed by finite element modeling with ANSYS and supporting experiments. The results show that the reduced cell size and narrow size distribution have beneficial influences on both the tensile and impact strengths. Decreasing the cell size or narrowing the cell size distribution was more effective for increasing the impact strength than the tensile strength in the same case. The relationship between the mechanical properties and cell structure parameters has a good correlation with the theoretical model.


2014 ◽  
Vol 887-888 ◽  
pp. 824-829
Author(s):  
Qing Fang Lv ◽  
Ji Hong Qin ◽  
Ran Zhu

Laminated veneer lumber is taken as an object of study, and use LVL specimens of different sizes for compression test and tensile test. The goal of the experiment is to investigate the size effect on compressive strength and tensile strength as well as the influence of the secondary glued laminated face, which appears in the secondary molding processes. The results show that both compressive strength and tensile strength have the size effect apparently and the existence of the secondary glued laminated face lower the compressive strength of LVL specimens. Afterwards, the relationship between compressive strength and volume along with tensile strength and area are obtained by the test results.


2007 ◽  
Vol 336-338 ◽  
pp. 2406-2410
Author(s):  
Yi Wang Bao ◽  
Xiao Xue Bu ◽  
Yan Chun Zhou ◽  
Li Zhong Liu

A relative method, defined as indirect approach to evaluate the material properties via the relationship between unknown properties and a known property, is proposed to estimate some properties that could not be measured by the traditional methods for ceramics. Experiments and theoretic analysis based on the relative method were carried out in this study to estimate the properties in following aspects: determining the temperature dependence of elastic modulus of some machineable ceramics by comparing the deflections; obtaining the modulus and strength of ceramic coatings supported by substrates, from the variation in properties of the rectangular beam samples before and after coating; estimating the residual stresses in tempered glass by comparing the change in the surface strength after strengthening.


2011 ◽  
Vol 117-119 ◽  
pp. 394-397
Author(s):  
Jen Ching Huang ◽  
Yung Jin Weng

This study used the nanoindenter to perform indentation tests on copper bulk and nano copper film in order to discuss the mechanical properties of pure copper at the nano scale. This study tested 7 levels of load, ranging from 20 to 200 μN (load increment at 30 μN) for the indentation tests on copper bulk and nano copper film specimens. Results showed that the load was roughly proportional to the residual depth, in the case of flat nano copper film, while the relationship between the load and the residual depth was not significant in the case of unsmooth copper bulk. Moreover, the hardness of both the copper bulk and the nano copper film would increase along with increasing load, while the Er value change trends of both the copper bulk and the nano copper film specimens differed with increasing load.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1543
Author(s):  
Francisca Guadalupe Cabrera-Covarrubias ◽  
José Manuel Gómez-Soberón ◽  
Carlos Antonio Rosas-Casarez ◽  
Jorge Luis Almaral-Sánchez ◽  
Jesús Manuel Bernal-Camacho

The porosity of mortars with recycled ceramic aggregates (10, 20, 30, 50, and 100% as a replacement of natural aggregate) was evaluated and analyzed using three different techniques. The results of gas adsorption (N2), Scanning Electron Microscopy (SEM) image analysis and open porosity allowed establishing the relationship between the recycled aggregate content and the porosity of these mortars, as well as the relationship between porosity and the physical and mechanical properties of the mortars: absorption, density, compressive strength, modulus of elasticity, and drying shrinkage. Using the R2 coefficient and the equation typology as criteria, additional data such as Brunauer, Emmett, and Teller (BET) surface area (N2 adsorption) established significant correlations with the mentioned properties; with SEM image analysis, no explanatory relationships could be established; and with open porosity, revealing relationships were established (R2 > 0.9). With the three techniques, it was confirmed that the increase in porosity is related to the increase in the amount of ceramic aggregate; in particular with gas adsorption (N2) and open porosity. It was concluded that the open porosity technique can explain the behavior of these recycled mortars with more reliable data, in a simple and direct way, linked to its establishment with a more representative sample of the mortar matrix.


BioResources ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. 4947-4962
Author(s):  
Jin Yan ◽  
Jianan Liu ◽  
Liqiang Zhang ◽  
Zhili Tan ◽  
Haoran Zhang ◽  
...  

The influence of the process parameters on the mechanical properties of compact wood powder generated via hot-pressing was analyzed through a single-factor experiment. The mechanical properties exhibited a nonlinear trend relative to the process conditions of hot-pressed compact wood powder. The relationship models between the process parameters and the mechanical properties for the compact wood powder were established by applying a multiple regression analysis and neural network methods combined with data from an orthogonal array design. A comparison between experimental and predicted results was made to investigate the accuracy of the established models by applying several data groups among the single-factor experiments. The results showed that the accuracy of the neural network model in terms of predicting the mechanical properties was greater compared with the multiple regression model. This demonstrates that the established neural network model had a better prediction performance, and it can accurately map the relationship between the process conditions and the mechanical properties of the compact wood powder.


Sign in / Sign up

Export Citation Format

Share Document