A random distribution (spectrum) of mechanical relaxation/retardation rate constants and its influence on tensile strength of imperfect (real, visco-elastic) polymer fibers in constant strain-rate extension

Polymer ◽  
2002 ◽  
Vol 43 (2) ◽  
pp. 583-590 ◽  
Author(s):  
K.J. Smith
2015 ◽  
Vol 37 (2) ◽  
pp. 57-60 ◽  
Author(s):  
Sylwia Stępień ◽  
Alojzy Szymański

Abstract Investigation of geosynthetics behaviour has been carried out for many years. Before using geosynthetics in practice, the standard laboratory tests had been carried out to determine basic mechanical parameters. In order to examine the tensile strength of the sample which extends at a constant strain rate, one should measure the value of the tensile force and strain. Note that geosynthetics work under different conditions of stretching and temperatures, which significantly reduce the strength of these materials. The paper presents results of the tensile test of geotextile at different strain rates and temperatures from 20 °C to 100 °C. The aim of this study was to determine the effect of temperature and strain rate on tensile strength and strain of the woven geotextile. The article presents the method of investigation and the results. The data obtained allowed us to assess the parameters of material which should be considered in the design of the load-bearing structures that work at temperatures up to 100 °C.


1977 ◽  
Vol 99 (4) ◽  
pp. 350-358 ◽  
Author(s):  
R. L. Klueh ◽  
R. E. Oakes

The tensile properties of a normalized-and-tempered 2-1/4 Cr-1 Mo steel were determined from 25 to 566° C and the strain rate 2.67 × 10−6 to 144/s. The specimens were taken from a 1-in. thick plate and had a microstructure that was essentially 100 percent bainite. Except at 25 and 566° C, the 0.2 percent yield stress was little affected by strain rate; at 25 and 566° C, the yield stress increased with increasing strain rate. At a constant strain rate, the yield stress decreased with increasing temperature. The effect of strain rate and temperature on the ultimate tensile strength was somewhat more complicated. A strength peak that resulted from dynamic strain aging was observed in the ultimate tensile strength-temperature relationship. The position of these peaks moved to higher temperatures with increasing strain rate. Total elongation and reduction of area were relatively constant over the range of test variables, except at 566° C, where they increased with decreasing strain rate. However, uniform elongation decreased with decreasing strain rate at 510 and 566° C, dropping to 1 and 0.6 percent, respectively.


1993 ◽  
Vol 115 (2) ◽  
pp. 200-203 ◽  
Author(s):  
Z. Xia ◽  
F. Ellyin

Constant strain-rate plastic straining followed by creep tests were conducted to investigate the effect of prior plastic straining on the subsequent creep behavior of 304 stainless steel at room temperature. The effects of plastic strain and plastic strain-rate were delineated by a specially designed test procedure, and it is found that both factors have a strong influence on the subsequent creep deformation. A creep model combining the two factors is then developed. The predictions of the model are in good agreement with the test results.


1993 ◽  
Vol 305 ◽  
Author(s):  
J. C. Arnold ◽  
A. R. Eccott

AbstractThe effects of physical ageing and prior immersion time on the ESC behaviour of polycarbonate in ethanol were studied. Constant strain rate tensile tests were performed at a range of strain rates for samples with ageing times varying from 100 hours to 3000 hours and for prior immersion times of between 1 hour and 500 hours. Comparison of tests performed in ethanol and in air gave a good indication of the point of craze initiation. The results showed that there was a reduction in strain to crazing as the strain rate decreased, apart from with the lowest strain rate used. A longer prior immersion time also promoted craze formation. Both of these results are attributable to diffusion effects. Physical ageing had little effect on the ESC behaviour, due to the large amounts of deformation encountered in this system.


1992 ◽  
Vol 114 (4) ◽  
pp. 378-383 ◽  
Author(s):  
G. Ferron ◽  
H. Karmaoui Idrissi ◽  
A. Zeghloul

Constitutive equations based on a state variable modeling of the thermo-viscoplastic behavior of metals are discussed, and incorporated in an exact, long-wavelength analysis of the neck-growth process in uniaxial tension. The general formalism is specialized to the case of f.c.c. metals in the range of intragranular, diffusion controlled plastic flow. The model is shown to provide a consistent account of aluminum behavior both under constant strain-rate and creep. Calculated uniaxial tensile ductilities and rupture lives in creep are also compared with experiments.


2020 ◽  
Vol 27 ◽  
pp. 1218-1223
Author(s):  
Sagar Chokshi ◽  
Piyush Gohil ◽  
Amul Lalakiya ◽  
Parth Patel ◽  
Amit Parmar

1989 ◽  
Vol 111 (2) ◽  
pp. 144-148 ◽  
Author(s):  
B. D. Harper

This study explores several possibilities for a correspondence in the behavior of ice at failure during uniaxial creep (constant stress) and strength (constant strain rate) experiments. The usual notion of failure in ice is employed (i.e., the occurrence of a minimum strain rate during a creep test and a peak or maximum stress during a strength test), and the behavior at failure is discussed in terms of a recently proposed nonlinear viscoelastic constitutive model for ice. It is demonstrated that no correspondence between creep and strength data can be expected in general; however, several approximate interrelationships do occur for the experimentally motivated special case of a constant (independent of stress and strain rate) failure strain.


Sign in / Sign up

Export Citation Format

Share Document