The Effects of Physical Ageing and of Prior Immersion on the Esc Behaviour of Polycarbonate in Ethanol

1993 ◽  
Vol 305 ◽  
Author(s):  
J. C. Arnold ◽  
A. R. Eccott

AbstractThe effects of physical ageing and prior immersion time on the ESC behaviour of polycarbonate in ethanol were studied. Constant strain rate tensile tests were performed at a range of strain rates for samples with ageing times varying from 100 hours to 3000 hours and for prior immersion times of between 1 hour and 500 hours. Comparison of tests performed in ethanol and in air gave a good indication of the point of craze initiation. The results showed that there was a reduction in strain to crazing as the strain rate decreased, apart from with the lowest strain rate used. A longer prior immersion time also promoted craze formation. Both of these results are attributable to diffusion effects. Physical ageing had little effect on the ESC behaviour, due to the large amounts of deformation encountered in this system.

2005 ◽  
Vol 297-300 ◽  
pp. 905-911 ◽  
Author(s):  
Xu Chen ◽  
Li Zhang ◽  
Masao Sakane ◽  
Haruo Nose

A series of tensile tests at constant strain rate were conducted on tin-lead based solders with different Sn content under wide ranges of temperatures and strain rates. It was shown that the stress-strain relationships had strong temperature- and strain rate- dependence. The parameters of Anand model for four solders were determined. The four solders were 60Sn-40Pb, 40Sn-60Pb, 10Sn-90Pb and 5Sn-95Pb. Anand constitutive model was employed to simulate the stress-strain behaviors of the solders for the temperature range from 313K to 398K and the strain rate range from 0.001%sP -1 P to 2%sP -1 P. The results showed that Anand model can adequately predict the rate- and temperature- related constitutive behaviors at all test temperatures and strain rates.


2011 ◽  
Vol 465 ◽  
pp. 419-422 ◽  
Author(s):  
Zoltán Száraz ◽  
Zuzanka Trojanová

The deformation characteristics of the WE54 magnesium alloy reinforced by 13% of SiC particles have been investigated in tension at elevated temperatures. Composite material was prepared by powder metallurgy technique. The strain rate sensitivity parameter m has been estimated by the abrupt strain rate changes (SRC) method. SRC tests and tensile tests with constant strain rate ( ) were performed at temperatures from 350 to 500 °C. Increased ductility has been found at high strain rates. The corresponding m value was 0.3. The activation energy Q has been estimated. Microstructure evolution has been observed by the light microscope and scanning electron microscope.


2015 ◽  
Vol 60 (2) ◽  
pp. 605-614 ◽  
Author(s):  
T. Kvačkaj ◽  
A. Kováčová ◽  
J. Bidulská ◽  
R. Bidulský ◽  
R. Kočičko

AbstractIn this study, static, dynamic and tribological properties of ultrafine-grained (UFG) oxygen-free high thermal conductivity (OFHC) copper were investigated in detail. In order to evaluate the mechanical behaviour at different strain rates, OFHC copper was tested using two devices resulting in static and dynamic regimes. Moreover, the copper was subjected to two different processing methods, which made possible to study the influence of structure. The study of strain rate and microstructure was focused on progress in the mechanical properties after tensile tests. It was found that the strain rate is an important parameter affecting mechanical properties of copper. The ultimate tensile strength increased with the strain rate increasing and this effect was more visible at high strain rates$({\dot \varepsilon} \sim 10^2 \;{\rm{s}}^{ - 1} )$. However, the reduction of area had a different progress depending on microstructural features of materials (coarse-grained vs. ultrafine-grained structure) and introduced strain rate conditions during plastic deformation (static vs. dynamic regime). The wear behaviour of copper was investigated through pin-on-disk tests. The wear tracks examination showed that the delamination and the mild oxidational wears are the main wear mechanisms.


DYNA ◽  
2016 ◽  
Vol 83 (195) ◽  
pp. 77-83 ◽  
Author(s):  
María José Quintana Hernández ◽  
José Ovidio García ◽  
Roberto González Ojeda ◽  
José Ignacio Verdeja

The use of Cu and Ti in Zn alloys improves mechanical properties as solid solution and dispersoid particles (grain refiners) may harden the material and reduce creep deformation. This is one of the main design problems for parts made with Zn alloys, even at room temperature. In this work the mechanical behavior of a Zn-Cu-Ti low alloy is presented using tensile tests at different strain rates, as well as creep tests at different loads to obtain the value of the strain rate coefficient m in samples parallel and perpendicular to the rolling direction of the Zn strip. The microstructure of the alloy in its raw state, as well as heat treated at 250°C, is also analyzed, as the banded structure produced by rolling influences the strengthening mechanisms that can be achieved through the treatment parameters.


2006 ◽  
Vol 129 (1) ◽  
pp. 29-35 ◽  
Author(s):  
Fahmi Zaïri ◽  
Moussa Naït-Abdelaziz ◽  
Krzysztof Woznica ◽  
Jean-Michel Gloaguen

In this study, a modelization of the viscoplastic behavior of amorphous polymers is proposed, from an approach originally developed for metal behavior at high temperature, in which state variable constitutive equations have been modified. A procedure for the identification of model parameters is developed through the use of experimental data from both uniaxial compressive tests extracted from the literature and uniaxial tensile tests performed in this study across a variety of strain rates. The numerical algorithm shows that the predictions of this model well describe qualitatively and quantitatively the intrinsic softening immediately after yielding and the subsequent progressive orientational hardening corresponding to the response of two polymers, amorphous polyethylene terephthalate and rubber toughened polymethyl methacrylate.


1980 ◽  
Vol 26 (94) ◽  
pp. 519 ◽  
Author(s):  
H. Singh ◽  
F.W. Smith

Abstract In conducting tension and compression tests on snow samples, strains and strain-rates are usually determined from the displacements of the ends of the samples. In this work, a strain-gage which mounts directly onto the snow sample during testing, was developed and was found to give accurate and direct measurements of strain and strain-rates. A commercially available 0-28 pF variable capacitor was modified to perform the required strain measurements. It is a polished metallic plunger sliding inside a metal-coated glass tube. The plunger and tube were each soldered to the end of a spring-steel wire arm. To the other end of these arms were soldered to 10 mm square pads made of thin brass shim stock. The whole device weighs 2.5 g and the low coefficient of friction in the capacitor resulted in a very low actuation force. To mount the strain gage, the pads are wetted and frozen onto the snow sample. A high degree of sensitivity was achieved through the use of “phase-lock-loop” electronic circuitry. The capacitance change caused by the strain in the sample, changes the frequency of output signal from an oscillator and thus causes the change in output from the system. In the locked state, to which the system is constantly driven by a feed-back loop, the system output is almost ripple free. The strain gages were calibrated in the field in order to take into account the effects of very low field temperatures. The calibration curves were almost linear over the travel of 15 mm, the maximum limit. The sensitivity of the system is 4 mV per strain unit, but this could be increased by an order of magnitude by minor adjustments in the circuit. Constant strain-rate tensile tests were performed on natural snow at Berthoud Pass, Colorado, U.S.A., in the density range of 140-290 kg m-3. Four strain gages were mounted onto the samples to sense any non-uniform deformation which otherwise would have gone unnoticed or caused scatter in the data. The average indication of these gages was used to construct stress—strain curves for various types of snow at different strain-rates. The effect of strain-rate on the behavior of snow was studied. “Ratcheting” in the stress-strain curve in the region where the snow becomes plastic was observed first by Kinosita in his compression tests. A similar phenomenon was observed in these tension tests. It was found that directly measured strain is quite different from that which would be calculated from sample end movement. Strain softening was not observed in these tests up to total strains of 8%. The strain-rate effects found were comparable to the results of other investigators.


1972 ◽  
Vol 94 (1) ◽  
pp. 207-212 ◽  
Author(s):  
D. P. Kendall

The effect of elastic strain rates ranging from 10−14 to 10 sec−1 and temperatures ranging from 200 K (−100 F) to 590 K (600 F) on the yield strength of several steels is reported. The steels utilized are a 1018 mild steel, 4340 steel, H-11 tool steel, and 300 grade maraging steel. The results are interpreted in terms of the Cottrell-Bilby yielding model based on release of dislocations from locking carbon atmospheres. The results for all of the materials except the maraging steel are consistent with this model if it is modified to account for relocking of dislocations by migration of carbon atoms. The maraging steel shows a constant strain rate sensitivity at a constant temperature, over the range of strain rates investigated. This rate sensitivity decreases with increasing temperature and at 590 K (600 F) a decreasing strength with increasing strain rate is found. This is attributed to stress aging effects.


1991 ◽  
Vol 113 (4) ◽  
pp. 475-484 ◽  
Author(s):  
K. P. Jen ◽  
J. N. Majerus

This paper presents the evaluation of the stress-strain behavior, as a function of strain-rate, for three tin-lead solders at room temperature. This behavior is critically needed for reliability analysis of printed circuit boards (PCB) since handbooks list minimal mechanical properties for the eutectic solder used in PCBs. Furthermore, most handbook data are for stable eutectic microstructure whereas PCB solder has a metastable microstructure. All three materials were purchased as “eutectics.” However, chemical analysis, volume fraction determination, and microhardness tests show some major variations between the three materials. Two of the materials have a eutectic composition, and one does not. The true stress-strain equations of one eutectic and the one noneutectic material are determined from compressive tests at engineering strain-rates between 0.0002/s and 0.2/s. The second eutectic material is evaluated using tensile tests with strain-rates between 0.00017/s and 0.042/s. The materials appear to exhibit linear elastic behavior only at extremely small strains, i.e., less than 0.0005. However, this “elastic” behavior showed considerable variation, and depended upon the strain rate. In both tension and compression the eutectic alloy exhibits nonlinear plastic behavior, i.e., strain-softening followed by strain-hardening, which depends upon the strain rate. A quadratic equation σy = σy(ε˚/ε˚0) + A(ε˚/ε˚0)ε + B(ε˚/ε˚0)ε2 fit to the data gives correlation coefficients R2 > 0.91. The coefficients σy(ε˚/ε˚0), A(ε˚/ε˚0), B(ε˚/ε˚0) are fitted functions of the normalized engineering strain rate ε˚/ε˚0. Replicated experiments are used at each strain-rate so that a measure of the statistical variation could be estimated. Measures of error associated with the regression analysis are also obtained so that an estimate of the total error in the stress-strain relations can be made.


Materials ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2098 ◽  
Author(s):  
Olga Yakovtseva ◽  
Maria Sitkina ◽  
Ahmed O. Mosleh ◽  
Anastasia Mikhaylovskaya

Increasing the strain rate at superplastic forming is a challenging technical and economic task of aluminum forming manufacturing. New aluminum sheets exhibiting high strain rate superplasticity at strain rates above 0.01 s−1 are required. This study describes the microstructure and the superplasticity properties of a new high-strength Al-Zn-Mg-based alloy processed by a simple thermomechanical treatment including hot and cold rolling. The new alloy contains Ni to form Al3Ni coarse particles and minor additions of Zr (0.19 wt.%) and Sc (0.06 wt.%) to form nanoprecipitates of the L12-Al3 (Sc,Zr) phase. The design of chemical and phase compositions of the alloy provides superplasticity with an elongation of 600–800% in a strain rate range of 0.01 to 0.6/s and residual cavitation less than 2%. A mean elongation-to-failure of 400% is observed at an extremely high constant strain rate of 1 s−1. The strain-induced evolution of the grain and dislocation structures as well as the L12 precipitates at superplastic deformation is studied. The dynamic recrystallization at superplastic deformation is confirmed. The superplastic flow behavior of the proposed alloy is modeled via a mathematical Arrhenius-type constitutive model and an artificial neural network model. Both models exhibit good predictability at low and high strain rates of superplastic deformation.


2020 ◽  
pp. 089270572094422
Author(s):  
Mohammadali Shirinbayan ◽  
Joseph Fitoussi ◽  
Farid Kheradmand ◽  
Arash Montazeri ◽  
Peiyuan Zuo ◽  
...  

Influence of loading temperature on the damage mechanism of polyphenylene sulfide (PPS) reinforced by glass fiber (PPS/GF30) under tension was experimentally studied from quasi-static (QS) to high strain rates. Two kinds of PPS/GF30 samples were prepared: PPS-0° and PPS-90° (correspond to fibers oriented parallel and perpendicular to the injection direction, respectively). After microscopic observation and thermomechanical characterizations by dynamic mechanical analysis, tensile tests up to failure with strain rates varying from 10−3 s−1 to 100 s−1 have been carried out at 25°C and 120°C with regard to PPS/GF30 glass transition temperature. To achieve the coupling effect of high strain rate and high temperature, a special chamber was designed to install on the servo-hydraulic machine. The results of QS tensile tests confirm the significant effect of fiber orientation and temperature on the Young’s modulus, the ultimate stress, and strain. High strain tensile test results showed that the PPS/GF30 composite is strain rate dependent at both temperatures. The results indicated that Young’s modulus remains constant by strain rate increasing at both temperatures while ultimate stress and strain are increased. No significant damage has been observed at 25°C in QS loading, whereas the macroscopic damage variable is increased to 20% at 120°C. Debonding at the fiber–matrix interface is the main damage mechanism at 120°C.


Sign in / Sign up

Export Citation Format

Share Document