Power characteristics of PV ensembles: experiences from the combined power production of 100 grid connected PV systems distributed over the area of Germany

Solar Energy ◽  
2001 ◽  
Vol 70 (6) ◽  
pp. 513-518 ◽  
Author(s):  
E. Wiemken ◽  
H.G. Beyer ◽  
W. Heydenreich ◽  
K. Kiefer
2018 ◽  
Vol 49 ◽  
pp. 00044 ◽  
Author(s):  
Slawomir Gulkowski ◽  
Natalia Zytkowska ◽  
Piotr Dragan

Photovoltaic systems are designed to operate for a very long time according to the modules’ warranty that guarantees at least of 80% of the nominal power production after 20 years of use. In order to assure the continuous power production with a high level for a long time, thermographic analysis should be performed to detect incipient anomalies in individual modules and junction boxes. This safe, convenient and noncontact method allows carrying out the inspection for working system without any contact with live wiring and without disconnecting the PV systems. Temperature distribution of the module surface can reveal many different types of anomalies, i.e. hot spots caused by local shading, microcracking or cell breakage. This paper shows the results of the infrared thermography analysis of the operating PV systems consisting of different technological modules: polycrystalline silicon (pc-Si), copper indium gallium diselenide (CIGS) and cadmium telluride (CdTe). The average working temperature of each different kind of technological module as well as overheated areas were investigated in this study. Temperature of the MC4 connectors was also analysed.


2020 ◽  
Vol 9 (11) ◽  
pp. 621
Author(s):  
Reinhold Lehneis ◽  
David Manske ◽  
Daniela Thrän

Photovoltaics, as one of the most important renewable energies in Germany, have increased significantly in recent years and cover up to 50% of the German power provision on sunny days. To investigate the manifold effects of increasing renewables, spatiotemporally disaggregated data on the power generation from photovoltaic (PV) systems are often mandatory. Due to strict data protection regulations, such information is not freely available for Germany. To close this gap, numerical simulations using publicly accessible plant and weather data can be applied to determine the required spatiotemporal electricity generation. For this, the sunlight-to-power conversion is modeled with the help of the open-access web tool of the Photovoltaic Geographical Information System (PVGIS). The presented simulations are carried out for the year 2016 and consider nearly 1.612 million PV systems in Germany, which have been aggregated into municipal areas before performing the calculations. The resulting hourly resolved time series of the entire plant ensemble are converted into a time series with daily resolution and compared with measured feed-in data to validate the numerical simulations that show a high degree of agreement. Such power production data can be used to monitor and optimize renewable energy systems on different spatiotemporal scales.


2016 ◽  
Vol 12 (2) ◽  
pp. 42
Author(s):  
Muhd Ikram Mohd Rashid ◽  
MF Akorede ◽  
LZ Chao ◽  
Nik Fadhil Nik Mohammed

2014 ◽  
Vol 15 (1) ◽  
pp. 77-91 ◽  
Author(s):  
Antonio Bracale ◽  
Guido Carpinelli ◽  
Annarita Di Fazio ◽  
Shahab Khormali

Abstract Distribution systems are undergoing significant changes as they evolve toward the grids of the future, which are known as smart grids (SGs). The perspective of SGs is to facilitate large-scale penetration of distributed generation using renewable energy sources (RESs), encourage the efficient use of energy, reduce systems’ losses, and improve the quality of power. Photovoltaic (PV) systems have become one of the most promising RESs due to the expected cost reduction and the increased efficiency of PV panels and interfacing converters. The ability to forecast power-production information accurately and reliably is of primary importance for the appropriate management of an SG and for making decisions relative to the energy market. Several forecasting methods have been proposed, and many indices have been used to quantify the accuracy of the forecasts of PV power production. Unfortunately, the indices that have been used have deficiencies and usually do not directly account for the economic consequences of forecasting errors in the framework of liberalized electricity markets. In this paper, advanced, more accurate indices are proposed that account directly for the economic consequences of forecasting errors. The proposed indices also were compared to the most frequently used indices in order to demonstrate their different, improved capability. The comparisons were based on the results obtained using a forecasting method based on an artificial neural network. This method was chosen because it was deemed to be one of the most promising methods available due to its capability for forecasting PV power. Numerical applications also are presented that considered an actual PV plant to provide evidence of the forecasting performances of all of the indices that were considered.


2020 ◽  
Vol 12 (24) ◽  
pp. 10684
Author(s):  
Luz Adriana Trejos-Grisales ◽  
Juan David Bastidas-Rodríguez ◽  
Carlos Andrés Ramos-Paja

Photovoltaic (PV) systems are usually developed by configuring the PV arrays with regular connection schemes, such as series-parallel, total cross-tied, bridge-linked, among others. Such a strategy is aimed at increasing the power that is generated by the PV system under partial shading conditions, since the power production changes depending on the connection scheme. Moreover, irregular and non-common connection schemes could provide higher power production for irregular (but realistic) shading conditions that aere caused by threes or other objects. However, there are few mathematical models that are able to predict the power production of different configurations and reproduce the behavior of both regular and irregular PV arrays. Those general array models are slow due to the large amount of computations that are needed to find the PV current for a given PV voltage. Therefore, this paper proposes a general mathematical model to predict the power production of regular and irregular PV arrays, which provides a faster calculation in comparison with the general models that were reported in the literature, but without reducing the prediction accuracy. The proposed modeling approach is based on detecting the inflection points that are caused by the bypass diodes activation, which enables to narrow the range in which the modules voltages are searched, thus reducing the calculation time. Therefore, this fast model is useful in designing the fixed connections of PV arrays that are subjected to shading conditions, in order to reconfigure the PV array in real-time, depending on the shading pattern, among other applications. The proposed solution is validated by comparing the results with another general model and with a circuital implementation of the PV system.


2021 ◽  
Vol 147 (3) ◽  
pp. 04021001
Author(s):  
Scott Simmons ◽  
Guilhem Dellinger ◽  
Murray Lyons ◽  
Abdelali Terfous ◽  
Abdellah Ghenaim ◽  
...  

Author(s):  
Patrick Schukalla

Uranium mining often escapes the attention of debates around the nuclear industries. The chemical elements’ representations are focused on the nuclear reactor. The article explores what I refer to as becoming the nuclear front – the uranium mining frontier’s expansion to Tanzania, its historical entanglements and current state. The geographies of the nuclear industries parallel dominant patterns and the unevenness of the global divisions of labour, resource production and consumption. Clearly related to the developments and expectations in the field of atomic power production, uranium exploration and the gathering of geological knowledge on resource potentiality remains a peripheral realm of the technopolitical perceptions of the nuclear fuel chain. Seen as less spectacular and less associated with high-technology than the better-known elements of the nuclear industry the article thus aims to shine light on the processes that pre-figure uranium mining by looking at the example of Tanzania.


2018 ◽  
Vol 1 (3) ◽  
Author(s):  
IJE Manager

In the past century, fossil fuels have dominated energy supply in Indonesia. However, concerns over emissions are likely to change the future energy supply. As people become more conscious of environmental issues, alternatives for energy are sought to reduce the environmental impacts. These include renewable energy (RE) sources such as solar photovoltaic (PV) systems. However, most RE sources like solar PV are not available continuously since they depend on weather conditions, in addition to geographical location. Bali has a stable and long sunny day with 12 hours of daylight throughout the year and an average insolation of 5.3 kWh/m2 per day. This study looks at the potential for on-grid solar PV to decarbonize energy in Bali. A site selection methodology using GIS is applied to measure solar PV potential. Firstly, the study investigates the boundaries related to environmental acceptability and economic objectives for land use in Bali. Secondly, the potential of solar energy is estimated by defining the suitable areas, given the technical assumptions of solar PV. Finally, the study extends the analysis to calculate the reduction in emissions when the calculated potential is installed. Some technical factors, such as tilting solar, and intermittency throughout the day, are outside the scope of this study. Based on this model, Bali has an annual electricity potential for 32-53 TWh from solar PV using amorphous thin-film silicon as the cheapest option. This potential amount to three times the electricity supply for the island in 2024 which is estimated at 10 TWh. Bali has an excessive potential to support its own electricity demand with renewables, however, some limitations exist with some trade-offs to realize the idea. These results aim to build a developmental vision of solar PV systems in Bali based on available land and the region’s irradiation.


Sign in / Sign up

Export Citation Format

Share Document