T cell-dependent immune response in C1q deficient mice: Defective IFN-γ production by antigen-specific T cells

1998 ◽  
Vol 35 (6-7) ◽  
pp. 344 ◽  
Author(s):  
A.J. Cutler ◽  
M. Botto ◽  
D. van Essen ◽  
K.A. Davies ◽  
D. Gray ◽  
...  
Keyword(s):  
T Cells ◽  
T Cell ◽  
Ifn Γ ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. e002269
Author(s):  
Shota Aoyama ◽  
Ryosuke Nakagawa ◽  
Satoshi Nemoto ◽  
Patricio Perez-Villarroel ◽  
James J Mulé ◽  
...  

BackgroundThe temporal response to checkpoint blockade (CB) is incompletely understood. Here, we profiled the tumor infiltrating lymphocyte (TIL) landscape in response to combination checkpoint blockade at two distinct timepoints of solid tumor growth.MethodsC57BL/6 mice bearing subcutaneous MC38 tumors were treated with anti-PD-1 and/or anti-CTLA-4 antibodies. At 11 or 21 days, TIL phenotype and effector function were analyzed in excised tumor digests using high parameter flow cytometry. The contributions of major TIL populations toward overall response were then assessed using ex vivo cytotoxicity and in vivo tumor growth assays.ResultsThe distribution and effector function among 37 distinct TIL populations shifted dramatically between early and late MC38 growth. At 11 days, the immune response was dominated by Tumor necrosis factor alpha (TNFα)-producing NKT, representing over half of all TIL. These were accompanied by modest frequencies of natural killer (NK), CD4+, or CD8+ T cells, producing low levels of IFN-γ. At 21 days, NKT populations were reduced to a combined 20% of TIL, giving way to increased NK, CD4+, and CD8+ T cells, with increased IFN-γ production. Treatment with CB accelerated this switch. At day 11, CB reduced NKT to less than 20% of all TIL, downregulated TNFα across NKT and CD4+ T cell populations, increased CD4+ and CD8+ TIL frequencies, and significantly upregulated IFN-γ production. Degranulation was largely associated with NK and NKT TIL. Blockade of H-2kb and/or CD1d during ex vivo cytotoxicity assays revealed NKT has limited direct cytotoxicity against parent MC38. However, forced CD1d overexpression in MC38 cells significantly diminished tumor growth, suggesting NKT TIL exerts indirect control over MC38 growth.ConclusionsDespite an indirect benefit of early NKT activity, CB accelerates a switch from TNFα, NKT-driven immune response toward an IFN-γ driven CD4+/CD8+ T cell response in MC38 tumors. These results uncover a novel NKT/T cell switch that may be a key feature of CB response in CD1d+ tumors.


Cancers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 3948
Author(s):  
Kazumasa Oya ◽  
Yoshiyuki Nakamura ◽  
Zhu Zhenjie ◽  
Ryota Tanaka ◽  
Naoko Okiyama ◽  
...  

The exact mechanisms of the imiquimod (IMQ)-induced antitumor effect have not been fully understood. Although both topical IMQ treatment and anti-PD-1 antibody may be used for primary skin lesions or skin metastases of various cancers, the efficacy of each monotherapy for these lesions is insufficient. Using a murine tumor model and human samples, we aimed to elucidate the detailed mechanisms of the IMQ-induced antitumor effect and analyzed the antitumor effect of combination therapy of topical IMQ plus anti-PD-1 antibody. Topical IMQ significantly suppressed the tumor growth of MC38 in wildtype mice. IMQ upregulated interferon γ (IFN-γ) expression in CD8+ T cells in both the lymph nodes and the tumor, and the antitumor effect was abolished in both Rag1-deficient mice and IFN-γ-deficient mice, indicating that IFN-γ produced by CD8+ T cells play a crucial role in the IMQ-induced antitumor effect. IMQ also upregulated PD-1 expression in T cells as well as PD-L1/PD-L2 expression in myeloid cells, suggesting that IMQ induces not only T-cell activation but also T-cell exhaustion by enhanced PD-1 inhibitory signaling. Combination therapy of topical IMQ plus anti-PD-1 antibody exerted a significantly potent antitumor effect when compared with each single therapy, indicating that the combination therapy is a promising therapy for the skin lesions of various cancers.


2000 ◽  
Vol 74 (17) ◽  
pp. 7738-7744 ◽  
Author(s):  
Sangkon Oh ◽  
Maryna C. Eichelberger

ABSTRACT The developing immune response in the lymph nodes of mice infected with influenza virus has both Th1- and Th2-type characteristics. Modulation of the interactions between antigen-presenting cells and T cells is one mechanism that may alter the quality of the immune response. We have previously shown that the ability of dendritic cells (DC) to stimulate the proliferation of alloreactive T cells is changed by influenza virus due to viral neuraminidase (NA) activity. Here we show that DC infected with influenza virus A/PR/8/34 (PR8) stimulate T cells to produce different types of cytokines in a dose-dependent manner. Optimal amounts of the Th1-type cytokines interleukin-2 (IL-2) and gamma interferon (IFN-γ) were produced from T cells stimulated by DC infected with low doses of PR8, while the Th2-type cytokines IL-4 and IL-10 were produced only in response to DC infected with high doses of PR8. IL-2 and IFN-γ levels corresponded with T-cell proliferation and were dependent on the activity of viral NA on the DC surface. In contrast, IL-4 secretion required the treatment of T cells with NA. Since viral particles were released only from DC that are infected with high doses of PR8, our results suggest that viral NA on newly formed virus particles desialylates T-cell surface molecules to facilitate a Th2-type response. These results suggest that the activity of NA may contribute to the mixed Th-type response observed during influenza virus infection.


2011 ◽  
Vol 18 (5) ◽  
pp. 815-824 ◽  
Author(s):  
Bala Ramaswami ◽  
Iulia Popescu ◽  
Camila Macedo ◽  
Chunqing Luo ◽  
Ron Shapiro ◽  
...  

ABSTRACTBK virus (BKV) nephropathy and hemorrhagic cystitis are increasingly recognized causes of disease in renal and hematopoietic stem cell transplant recipients, respectively. Functional characterization of the immune response to BKV is important for clinical diagnosis, prognosis, and vaccine design. A peptide mix (PepMix) and overlapping (OPP) or random (RPP) peptide pools derived from BKV large T antigen (LTA) were used to restimulate 14-day-expanded peripheral blood mononuclear cells (PBMC) from 27 healthy control subjects in gamma interferon (IFN-γ)-specific enzyme-linked immunospot (ELISPOT) assays. A T-cell response to LTA PepMix was detected in 15/27 subjects. A response was frequently observed with peptides derived from the helicase domain (9/15 subjects), while the DNA binding and host range domains were immunologically inert (0/15 subjects). For all nine subjects who responded to LTA peptide pools, the immune response could be explained largely by a 15-mer peptide designated P313. P313-specific CD4+T-cell clones demonstrated (i) stringent LTA peptide specificity; (ii) promiscuous recognition in the context of HLA-DR alleles; (iii) cross recognition of homologous peptides from the polyomavirus simian virus 40 (SV40); (iv) an effector memory phenotype, CD107a expression, and intracellular production of IFN-γ and tumor necrosis factor alpha (TNF-α); (v) cytotoxic activity in a chromium release assay; and (vi) the ability to directly present cognate antigen to autologous T cells. In conclusion, T-cell-mediated immunity to BKV in healthy subjects is associated with a polyfunctional population of CD4+T cells with dual T-helper and T-cytotoxic properties. HLA class II promiscuity in antigen presentation makes the targeted LTA peptide sequence a suitable candidate for inclusion in immunotherapy protocols.


mBio ◽  
2020 ◽  
Vol 11 (2) ◽  
Author(s):  
Jennifer D. Helble ◽  
Rodrigo J. Gonzalez ◽  
Ulrich H. von Andrian ◽  
Michael N. Starnbach

ABSTRACT While there is no effective vaccine against Chlamydia trachomatis infection, previous work has demonstrated the importance of C. trachomatis-specific CD4+ T cells (NR1 T cells) in pathogen clearance. Specifically, NR1 T cells have been shown to be protective in mice, and this protection depends on the host’s ability to sense the cytokine gamma interferon (IFN-γ). However, it is unclear what role NR1 production or sensing of IFN-γ plays in T cell homing to the genital tract or T cell-mediated protection against C. trachomatis. Using two-photon microscopy and flow cytometry, we found that naive wild-type (WT), IFN-γ−/−, and IFN-γR−/− NR1 T cells specifically home to sections in the genital tract that contain C. trachomatis. We also determined that protection against infection requires production of IFN-γ from either NR1 T cells or endogenous cells, further highlighting the importance of IFN-γ in clearing C. trachomatis infection. IMPORTANCE Chlamydia trachomatis is an important mucosal pathogen that is the leading cause of sexually transmitted bacterial infections in the United States. Despite this, there is no vaccine currently available. In order to develop such a vaccine, it is necessary to understand the components of the immune response that can lead to protection against this pathogen. It is well known that antigen-specific CD4+ T cells are critical for Chlamydia clearance, but the contexts in which they are protective or not protective are unknown. Here, we aimed to characterize the importance of gamma interferon production and sensing by T cells and the effects on the immune response to C. trachomatis. Our work here helps to define the contexts in which antigen-specific T cells can be protective, which is critical to our ability to design an effective and protective vaccine against C. trachomatis.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 717-717
Author(s):  
Etiena Basner-Tschakarjan ◽  
Federico Mingozzi ◽  
Yifeng Chen ◽  
Amit Nathwani ◽  
Edward Tuddenham ◽  
...  

Abstract In a clinical study of gene transfer for hemophilia B an adeno-associated virus vector serotype 8 (AAV8) expressing a self-complementary liver-specific expression cassette for the factor IX (FIX) transgene was administered intravenously in ten affected subjects. The results of the first part of the study have been published (NEJM 365:2357-65, 2011). In this abstract we present the immunomonitoring data, using Interferon-gamma (IFN-γ) ELISpot and polyfunctional T cell analysis of peripheral blood mononuclear cells (PBMCs) to monitor cellular immune responses to vector capsid and to Factor IX. We have previously shown that the cellular immune response was directed solely towards AAV capsid epitopes, not FIX, and that the response was dose-dependent. Out of six subjects infused in the high dose cohort (2x1012vg/kg), 4/6 manifested a minor rise in liver enzyme levels and detection of capsid-specific T cell reactivitiy in the ELISpot assay at ∼7-10 weeks post vector infusion. Maximum results on IFN- γ ELISpots ranged from 200-500 sfu/million cells. In two of these cases a modest decline in FIX level also occurred. Prompt initiation of prednisolone reversed these effects and rescued FIX levels. The remaining two subjects infused at the high dose, showed no rise in liver enzyme levels at any time point. However capsid reactive T cells were detectable in one subject as early as one to two weeks after vector infusion in peripheral blood by IFN-γ ELISpot assay, while no activation at all was detected in the other subject, possibly due to low cell recovery and viability of the cells. A similar immune response profile, with early detection of activated T cells but no rise in liver enzymes, was also observed in both subjects in the intermediate dose cohort in the first part of this study. Polyfunctional T cell analysis revealed concurrent Interleukin-2, Tumor necrosis factor-alpha and CD107a positivity in activated T cells at the peak of activation. Furthermore it showed that capsid-specific early T cell responses were detectable in the CD4+ T cell and later in the CD8+T cell compartment. Long-term immune monitoring of all subjects is ongoing. Importantly in one of the first two subjects treated at the high dose, capsid reactive T cells were detected by ELISpot 1.5 years after gene transfer; these cells were not detected in the other subject in whom long-term follow-up samples are available. Of note, capsid-reactive T cells were also seen at late time points (>1 year after infusion) in a middle dose subject and a low dose subject. Despite detectable T cell reactivity towards the AAV capsid in the peripheral blood FIX expression remained stable, suggesting that there is a short window of time during which transduced hepatocytes present a target for cytotoxic T cells, and that T cell positivity after this window is without any clinical consequences. In conclusion, for this scAAV8 vector there appears to be a critical threshold vector dose for a clinically detectable immune response, starting at 2x1012 vg/kg. The clinically detectable response occurred in four out of six subjects so far, and was manifest within a critical time interval of 7-10 weeks post infusion. The capsid-specific response was polyfunctional and detected in CD4+ and CD8+T cells in peripheral blood. It is important to note that not all subjects treated at the high dose developed an immune response. However, given the limited dataset, it is not yet possible to define predictive parameters, e.g. HLA type of a subject, for an immune response. Continued monitoring and future studies with more subjects will be necessary to confirm the presented findings, in particular time and rate of occurrence of a cellular response as well as successful treatment with a short course of Prednisolon. Disclosures: Tuddenham: Pfizer: Consultancy. Reiss:Hemophilia of Georgia: Honoraria. High:BristolMyersSquibb: Consultancy, membership on a Data Safety and Monitoring Board, membership on a Data Safety and Monitoring Board Other; Elsevier, Inc.: royalties from textbook, royalties from textbook Patents & Royalties; Genzyme, Inc.: Membership on an entity’s Board of Directors or advisory committees; Intrexon: Consultancy; Novo Nordisk: Consultancy, Member of a grant review committee, Member of a grant review committee Other; Shire : Consultancy; Benitec: Consultancy; bluebirdbio, Inc.: Consultancy, Equity Ownership, Membership on an entity’s Board of Directors or advisory committees; BioMarin: Consultancy; Alnylam Pharmaceuticals: Consultancy, Membership on an entity’s Board of Directors or advisory committees.


2003 ◽  
Vol 71 (6) ◽  
pp. 3172-3182 ◽  
Author(s):  
María Colmenares ◽  
Peter E. Kima ◽  
Erika Samoff ◽  
Lynn Soong ◽  
Diane McMahon-Pratt

ABSTRACT Previous studies have demonstrated that protection against New World leishmaniasis caused by Leishmania amazonensis can be elicited by immunization with the developmentally regulated Leishmania amastigote antigen, P-8. In this study, several independent experimental approaches were employed to investigate the protective immunological mechanisms involved. T-cell subset depletion experiments clearly indicate that elicitation of CD8+ (as well as CD4+) effector responses is required for protection. Further, mice lacking β2-microglobulin (and hence deficient in major histocompatibility complex class I antigen presentation) were not able to control a challenge infection after vaccination, indicating an essential protective role for CD8+ T effector responses. Analysis of the events ongoing at the cutaneous site of infection indicated a changing cellular dynamic involved in protection. Early postinfection in protectively vaccinated mice, a predominance of CD8+ T cells, secreting gamma interferon (IFN-γ) and expressing perforin, was observed at the site of infection; subsequently, activated CD4+ T cells producing IFN-γ were primarily found. As protection correlated with the ratio of total IFN-γ-producing cells (CD4+ and CD8+ T cells) to macrophages found at the site of infection, a role for IFN-γ was evident; in addition, vaccination of IFN-γ-deficient mice failed to provide protection. To further assess the effector mechanisms that mediate protection, mice deficient in perforin synthesis were examined. Perforin-deficient mice vaccinated with the P-8 antigen were unable to control infection. Thus, the elicitation of CD8+ T cell effector mechanisms (perforin, IFN-γ) are clearly required in the protective immune response against L. amazonensis infection in vaccinated mice.


2001 ◽  
Vol 69 (7) ◽  
pp. 4320-4328 ◽  
Author(s):  
Natalya V. Serbina ◽  
JoAnne L. Flynn

ABSTRACT The contribution of CD8+ T cells to the control of tuberculosis has been studied primarily during acute infection in mouse models. Memory or recall responses in tuberculosis are less well characterized, particularly with respect to the CD8 T-cell subset. In fact, there are published reports that CD8+ T cells do not participate in the memory immune response to Mycobacterium tuberculosis. We examined the CD8+ T-cell memory and local recall response to M. tuberculosis. To establish a memory immunity model, C57BL/6 mice were infected with M. tuberculosis, followed by treatment with anti-mycobacterial drugs and prolonged rest. The lungs of memory immune mice contained CD4+ and CD8+ T cells with the cell surface phenotype characteristic of memory cells (CD69lowCD25low CD44high). At 1 week postchallenge withM. tuberculosis via aerosol, ≥30% of both CD4+ and CD8+ T cells in the lungs of immune mice expressed the activation marker CD69 and could be restimulated to produce gamma interferon (IFN-γ). In contrast, <6% of T cells in the lungs of naive challenged mice were CD69+ at 1 week postchallenge, and IFN-γ production was not observed at this time point. CD8+ T cells from the lungs of both naive and memory mice after challenge were cytotoxic toward M. tuberculosis-infected macrophages. Our data indicate that memory and recall immunity to M. tuberculosis is comprised of both CD4+ and CD8+ T lymphocytes and that there is a rapid response of both subsets in the lungs following challenge.


2004 ◽  
Vol 72 (4) ◽  
pp. 2081-2087 ◽  
Author(s):  
Carola Muñoz-Montesino ◽  
Edilia Andrews ◽  
Rodolfo Rivers ◽  
Andrés González-Smith ◽  
Gustavo Moraga-Cid ◽  
...  

ABSTRACT In the development of vaccines capable of providing immunity against brucellosis, Cu-Zn superoxide dismutase (SOD) has been demonstrated to be one of the protective immunogens of Brucella abortus. In an earlier study, we provided strong evidence that intramuscular injection with a plasmid DNA carrying the SOD gene (pcDNA-SOD) was able to induce a protective immune response. The present study was designed to characterize T-cell immune responses after an intraspleen (i.s.) vaccination of BALB/c mice with pcDNA-SOD. Animals vaccinated with pcDNA-SOD did not develop SOD-specific antibodies, at least until week 4 after immunization (the end of the experiment), and in vitro stimulation of their splenocytes with either recombinant Cu-Zn SOD or crude Brucella protein induced the secretion of gamma interferon (IFN-γ), but not interleukin-4, and elicited the induction of cytotoxic-T-lymphocyte activity. Upon analyzing the SOD-specific T-cell responses, the pcDNA-SOD vaccination was found to be stimulating both CD4+- and CD8+-T-cell populations. However, only the CD4+ population was able to produce IFN-γ and only the CD8+ population was able to induce cytotoxic activity. Nevertheless, although i.s. route vaccination induces a significant level of protection in BALB/c mice against challenge with the virulent B. abortus strain 2308, vaccination by the intramuscular route with a similar amount of plasmid DNA does not protect. Based on these results, we conclude that i.s. immunization with pcDNA-SOD vaccine efficiently induced a Th1 type of immune response and a protective response that could be related to IFN-γ production and cytotoxic activity against infected cells by SOD-specific CD4+ and CD8+ T cells, respectively.


2000 ◽  
Vol 68 (11) ◽  
pp. 6273-6280 ◽  
Author(s):  
Adrian L. Smith ◽  
Adrian C. Hayday

ABSTRACT Because most pathogens initially challenge the body at epithelial surfaces, it is important to dissect the mechanisms that underlie T-cell responses to infected epithelial cells in vivo. The coccidian parasites of the genus Eimeria are protozoan gut pathogens that elicit a potent, protective immune response in a wide range of host species. CD4+ αβ T cells and gamma interferon (IFN-γ) are centrally implicated in the primary immunoprotective response. To define any additional requirements for the primary response and to develop a comparison between the primary and the secondary response, we have studied Eimeria infections of a broad range of genetically altered mice. We find that a full-strength primary response depends on β2-microglobulin (class I major histocompatibility complex [MHC] and class II MHC and on IFN-γ and interleukin-6 (IL-6) but not on TAP1, perforin, IL-4, Fas ligand, or inducible nitric oxide synthetase. Indeed, MHC class II-deficient and IFN-γ-deficient mice are as susceptible to primary infection as mice deficient in all αβ T cells. Strikingly, the requirements for a highly effective αβ-T-cell-driven memory response are less stringent, requiring neither IFN-γ nor IL-6 nor class I MHC. The class II MHC dependence was also reduced, with adoptively transferable immunity developing in MHC class II−/− mice. Besides the improved depiction of an immune response to a natural gut pathogen, the finding that effective memory can be elicited in the absence of primary effector responses appears to create latitude in the design of vaccine strategies.


Sign in / Sign up

Export Citation Format

Share Document