Cloning and characterization of the rat Hsf2 promoter: a critical role of proximal E-box element and USF protein in Hsf2 regulation in different compartments of the brain

Author(s):  
Sang-Seop Lee ◽  
Seung-Hyun Kwon ◽  
Jae-Suk Sung ◽  
Mi-Young Han ◽  
Young-Mee Park
Keyword(s):  
E Box ◽  
2021 ◽  
Vol 22 (4) ◽  
pp. 1800
Author(s):  
Kun-Hua Yu ◽  
Mei-Yu Huang ◽  
Yi-Ru Lee ◽  
Yu-Kie Lin ◽  
Hau-Ren Chen ◽  
...  

Misfolding of prion protein (PrP) into amyloid aggregates is the central feature of prion diseases. PrP has an amyloidogenic C-terminal domain with three α-helices and a flexible tail in the N-terminal domain in which multiple octapeptide repeats are present in most mammals. The role of the octapeptides in prion diseases has previously been underestimated because the octapeptides are not located in the amyloidogenic domain. Correlation between the number of octapeptide repeats and age of onset suggests the critical role of octapeptide repeats in prion diseases. In this study, we have investigated four PrP variants without any octapeptides and with 1, 5 and 8 octapeptide repeats. From the comparison of the protein structure and the thermal stability of these proteins, as well as the characterization of amyloids converted from these PrP variants, we found that octapeptide repeats affect both folding and misfolding of PrP creating amyloid fibrils with distinct structures. Deletion of octapeptides forms fewer twisted fibrils and weakens the cytotoxicity. Insertion of octapeptides enhances the formation of typical silk-like fibrils but it does not increase the cytotoxicity. There might be some threshold effect and increasing the number of peptides beyond a certain limit has no further effect on the cell viability, though the reasons are unclear at this stage. Overall, the results of this study elucidate the molecular mechanism of octapeptides at the onset of prion diseases.


1992 ◽  
Vol 263 (6) ◽  
pp. R1235-R1240
Author(s):  
R. A. Cridland ◽  
N. W. Kasting

Previous investigations on the antipyretic properties of arginine vasopressin have used bacterial endotoxins or pyrogens to induce fever. Because these experimental models of fever fail to mimic all aspects of the responses to infection, we felt it was important to examine the role of endogenously released vasopressin as a neuromodulator in febrile thermoregulation during infection. Therefore the present study examines the effects of chronic infusion of a V1-receptor antagonist or saline (via osmotic minipumps into the ventral septal area of the brain) on a fever induced by injection of live bacteria. Telemetry was used for continuous measurement of body temperature in the awake unhandled rat. Animals infused with the V1-antagonist exhibited fevers that were greater in duration compared with those of saline-infused animals. These results support the hypothesis that vasopressin functions as an antipyretic agent or fever-reducing agent in brain. Importantly, they suggest that endogenously released vasopressin may play a role as a neuromodulator in natural fever.


Archaea ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-6
Author(s):  
Yanli Zhang ◽  
Linley R. Schofield ◽  
Carrie Sang ◽  
Debjit Dey ◽  
Ron S. Ronimus

(R)-Sulfolactate dehydrogenase (EC 1.1.1.337), termed ComC, is a member of an NADH/NADPH-dependent oxidoreductase family of enzymes that catalyze the interconversion of 2-hydroxyacids into their corresponding 2-oxoacids. The ComC reaction is reversible and in the biosynthetic direction causes the conversion of (R)-sulfolactate to sulfopyruvate in the production of coenzyme M (2-mercaptoethanesulfonic acid). Coenzyme M is an essential cofactor required for the production of methane by the methyl-coenzyme M reductase complex. ComC catalyzes the third step in the first established biosynthetic pathway of coenzyme M and is also involved in methanopterin biosynthesis. In this study, ComC fromMethanobrevibacter milleraeSM9 was cloned and expressed inEscherichia coliand biochemically characterized. Sulfopyruvate was the preferred substrate using the reduction reaction, with 31% activity seen for oxaloacetate and 0.2% seen forα-ketoglutarate. Optimal activity was observed at pH 6.5. The apparentKMfor coenzyme (NADH) was 55.1 μM, and for sulfopyruvate, it was 196 μM (for sulfopyruvate theVmaxwas 93.9 μmol min−1 mg−1andkcatwas 62.8 s−1). The critical role of ComC in two separate cofactor pathways makes this enzyme a potential means of developing methanogen-specific inhibitors for controlling ruminant methane emissions which are increasingly being recognized as contributing to climate change.


2019 ◽  
Vol 2019 ◽  
pp. 1-21 ◽  
Author(s):  
Matylda B. Mielcarska ◽  
Magdalena Bossowska-Nowicka ◽  
Karolina P. Gregorczyk-Zboroch ◽  
Zbigniew Wyżewski ◽  
Lidia Szulc-Dąbrowska ◽  
...  

Toll-like receptors (TLRs) sense the presence of pathogen-associated molecular patterns. Nevertheless, the mechanisms modulating TLR-triggered innate immune responses are not yet fully understood. Complex regulatory systems exist to appropriately direct immune responses against foreign or self-nucleic acids, and a critical role of hepatocyte growth factor-regulated tyrosine kinase substrate (HRS), endosomal sorting complex required for transportation-0 (ESCRT-0) subunit, has recently been implicated in the endolysosomal transportation of TLR7 and TLR9. We investigated the involvement of Syk, Hrs, and STAM in the regulation of the TLR3 signaling pathway in a murine astrocyte cell line C8-D1A following cell stimulation with a viral dsRNA mimetic. Our data uncover a relationship between TLR3 and ESCRT-0, point out Syk as dsRNA-activated kinase, and suggest the role for Syk in mediating TLR3 signaling in murine astrocytes. We show molecular events that occur shortly after dsRNA stimulation of astrocytes and result in Syk Tyr-342 phosphorylation. Further, TLR3 undergoes proteolytic processing; the resulting TLR3 N-terminal form interacts with Hrs. The knockdown of Syk and Hrs enhances TLR3-mediated antiviral response in the form of IFN-β, IL-6, and CXCL8 secretion. Understanding the role of Syk and Hrs in TLR3 immune responses is of high importance since activation and precise execution of the TLR3 signaling pathway in the brain seem to be particularly significant in mounting an effective antiviral defense. Infection of the brain with herpes simplex type 1 virus may increase the secretion of amyloid-β by neurons and astrocytes and be a causal factor in degenerative diseases such as Alzheimer’s disease. Errors in TLR3 signaling, especially related to the precise regulation of the receptor transportation and degradation, need careful observation as they may disclose foundations to identify novel or sustain known therapeutic targets.


2020 ◽  
Vol 29 (18) ◽  
pp. 3054-3063
Author(s):  
Congyao Zha ◽  
Carole A Farah ◽  
Richard J Holt ◽  
Fabiola Ceroni ◽  
Lama Al-Abdi ◽  
...  

Abstract Microphthalmia, coloboma and cataract are part of a spectrum of developmental eye disorders in humans affecting ~12 per 100 000 live births. Currently, variants in over 100 genes are known to underlie these conditions. However, at least 40% of affected individuals remain without a clinical genetic diagnosis, suggesting variants in additional genes may be responsible. Calpain 15 (CAPN15) is an intracellular cysteine protease belonging to the non-classical small optic lobe (SOL) family of calpains, an important class of developmental proteins, as yet uncharacterized in vertebrates. We identified five individuals with microphthalmia and/or coloboma from four independent families carrying homozygous or compound heterozygous predicted damaging variants in CAPN15. Several individuals had additional phenotypes including growth deficits, developmental delay and hearing loss. We generated Capn15 knockout mice that exhibited similar severe developmental eye defects, including anophthalmia, microphthalmia and cataract, and diminished growth. We demonstrate widespread Capn15 expression throughout the brain and central nervous system, strongest during early development, and decreasing postnatally. Together, these findings demonstrate a critical role of CAPN15 in vertebrate developmental eye disorders, and may signify a new developmental pathway.


2016 ◽  
Vol 84 (9) ◽  
pp. 2697-2702 ◽  
Author(s):  
Zhangsheng Yang ◽  
Lingli Tang ◽  
Lili Shao ◽  
Yuyang Zhang ◽  
Tianyuan Zhang ◽  
...  

Despite the extensivein vitrocharacterization of CPAF (chlamydialprotease/proteasome-likeactivityfactor), its role in chlamydial infection and pathogenesis remains unclear. We now report that aChlamydia trachomatisstrain deficient in expression of CPAF (L2-17) is no longer able to establish a successful infection in the mouse lower genital tract following an intravaginal inoculation. The L2-17 organisms were cleared from the mouse lower genital tract within a few days, while a CPAF-sufficientC. trachomatisstrain (L2-5) survived in the lower genital tract for more than 3 weeks. However, both the L2-17 and L2-5 organisms maintained robust infection courses that lasted up to 4 weeks when they were directly delivered into the mouse upper genital tract. The CPAF-dependent chlamydial survival in the lower genital tract was confirmed in multiple strains of mice. Thus, we have demonstrated a critical role of CPAF in promotingC. trachomatissurvival in the mouse lower genital tracts. It will be interesting to further investigate the mechanisms of the CPAF-dependent chlamydial pathogenicity.


Blood ◽  
2015 ◽  
Vol 125 (22) ◽  
pp. 3388-3392 ◽  
Author(s):  
Olli Silvennoinen ◽  
Stevan R. Hubbard

Abstract The critical role of Janus kinase-2 (JAK2) in regulation of myelopoiesis was established 2 decades ago, but identification of mutations in the pseudokinase domain of JAK2 in myeloproliferative neoplasms (MPNs) and in other hematologic malignancies highlighted the role of JAK2 in human disease. These findings have revolutionized the diagnostics of MPNs and led to development of novel JAK2 therapeutics. However, the molecular mechanisms by which mutations in the pseudokinase domain lead to hyperactivation of JAK2 and clinical disease have been unclear. Here, we describe recent advances in the molecular characterization of the JAK2 pseudokinase domain and how pathogenic mutations lead to constitutive activation of JAK2.


2009 ◽  
Vol 8 (4) ◽  
pp. 595-605 ◽  
Author(s):  
Michael R. Botts ◽  
Steven S. Giles ◽  
Marcellene A. Gates ◽  
Thomas R. Kozel ◽  
Christina M. Hull

ABSTRACT Spores are essential particles for the survival of many organisms, both prokaryotic and eukaryotic. Among the eukaryotes, fungi have developed spores with superior resistance and dispersal properties. For the human fungal pathogens, however, relatively little is known about the role that spores play in dispersal and infection. Here we present the purification and characterization of spores from the environmental fungus Cryptococcus neoformans. For the first time, we purified spores to homogeneity and assessed their morphological, stress resistance, and surface properties. We found that spores are morphologically distinct from yeast cells and are covered with a thick spore coat. Spores are also more resistant to environmental stresses than yeast cells and display a spore-specific configuration of polysaccharides on their surfaces. Surprisingly, we found that the surface of the spore reacts with antibodies to the polysaccharide glucuronoxylomannan, the most abundant component of the polysaccharide capsule required for C. neoformans virulence. We explored the role of capsule polysaccharide in spore development by assessing spore formation in a series of acapsular strains and determined that capsule biosynthesis genes are required for proper sexual development and normal spore formation. Our findings suggest that C. neoformans spores may have an adapted cell surface that facilitates persistence in harsh environments and ultimately allows them to infect mammalian hosts.


Sign in / Sign up

Export Citation Format

Share Document