Seasonal climate summary Southern Hemisphere (autumn 1989): a second peak in the Southern Oscillation Index

1990 ◽  
Vol 37 (12) ◽  
pp. 1092
1994 ◽  
Vol 45 (7) ◽  
pp. 1557 ◽  
Author(s):  
I Kuhnel

This study examines the relationship between the Southern Oscillation Index and the sugarcane yield anomalies at 27 mills in north-eastern Australia (Queensland) for the period 1950-1989. The major results of this work indicate that the SO1 alone seems to have only a limited value as predictor of total sugarcane yields over large areas (i.e. the whole of Queensland). However, on a smaller scale, the SO1 appears to be a useful indicator of yields for the northern sugarcane districts. In these northern areas, the highest correlations with the SO1 are reached during the southern hemisphere spring and summer months 6 to 11 months prior to the harvest. They are negative and explain about 40% of the total variance. They also suggest that a positive SO1 during the spring and summer months tends to be followed by lower-than-normal yields at the following harvest and vice versa. This signal is rather robust and withstands rigorous significance testing. Moreover, it appears that the relationship between the SO1 and the sugarcane yields has been relatively strong and stable for the past 40 years, but weakened substantially during the 1930-1940 period.


2006 ◽  
Vol 43 ◽  
pp. 14-22 ◽  
Author(s):  
David Bolius ◽  
Margit Schwikowski ◽  
Theo Jenk ◽  
Heinz W. Gäggeler ◽  
Gino Casassa ◽  
...  

AbstractIn January 2003, shallow firn cores were recovered from Glaciar Esmeralda on Cerro del Plomo (33°14’S, 70°13’W; 5300 ma.s.l.), central Chile, and from Glaciar La Ollada on Cerro Mercedario (31°58’S, 70°07’W; 6070 ma.s.l.), Argentina, in order to find a suitable archive for paleoclimate reconstruction in a region strongly influenced by the El Nino-Southern Oscillation. In the area between 28°S and 35°S, the amount of winter precipitation is significantly correlated to the Southern Oscillation Index, with higher values during El Nino years. Glaciochemical analysis indicates that the paleo-record at Glaciar La Ollada is well preserved, whereas at Glaciar Esmeralda the record is strongly influenced by meltwater formation and percolation. A preliminary dating of the Mercedario core by annual-layer counting results in a time-span of 17 years (1986-2002), yielding an average annual net accumulation of 0.45 m w.e.


2016 ◽  
Vol 5 (2) ◽  
pp. 132 ◽  
Author(s):  
Tatiana A. Arivelo ◽  
Yuh-Lang Lin

Variability of and generation mechanisms for Madagascar rainfall are studied by conducting climatological, synoptic and mesoscale analyses. It is found the rainfall variability is highly sensitive to seasons with high variability in summer (Nov-Apr). The rainfall in summer is controlled by the Intertropical Convergence Zone (ITCZ) and orographic rainfall associated with tropical cyclones (TCs), while the rainfall in winter (May-Oct) is controlled by trade winds and local orographic rainfall along the eastern coast. Synoptic analysis reveals that major climate variations in summer are associated with ITCZ position, which is closely related to TC genesis locations and quasi-biennial oscillation (QBO). Linkages between El-Niño Southern Oscillation Index (ENSO) and Southern Oscillation Index (SOI) are identified as the cause of inconsistent dry or wet summers. Mesoscale analysis depicts the importance of the orographic effects on prevailing wind, which are controlled by the orography in both seasons. In winter, the prevailing trade winds over the Southwest Indian Ocean are from the east and are split to the north and south when it impinges on Malagasy Mountains. On the other hand, in summer the prevailing easterlies are weaker leading to the production of lee vortices, in addition to the flow splitting upstream of the mountain. Thus, the flow is classified into two regimes: (a) flow-over regime with no lee vortices under high Froude number (Fr=1.2-1.8) flow, and (b) flow-around regime with lee vortices under low Fr (=0.88-1.16) flow. A case study of TC Domoina (1984) indicates that the long-lasting heavy rainfall was induced by the strong orographic blocking of Madagascar. The shorter-term (e.g., 2 days) heavy orographic precipitation is characterized by large VH ∙Ñh which is composed by two common ingredients, namely a strong low-level wind normal to the mountain (VH) and a steep mountain slope (∇h).


Radiocarbon ◽  
2004 ◽  
Vol 46 (2) ◽  
pp. 901-910 ◽  
Author(s):  
H Kitagawa ◽  
Hitoshi Mukai ◽  
Yukihiro Nojiri ◽  
Yasuyuki Shibata ◽  
Toshiyuki Kobayashi ◽  
...  

Air sample collections over the western Pacific have continued since 1992 as a part of Center for Global Environmental Research, National Institute for Environmental Studies (CGER-NIES) global environmental monitoring program. The air samples collected on the Japan-Australia transect made it possible to trace the seasonal and secular 14CO2 variations, as well as an increasing trend of greenhouse gases over the western Pacific. A subset of CO2 samples from latitudes of 10–15°N and 23–28°S were chosen for accelerator mass spectrometry (AMS) 14C analysis using a NIES-TERRA AMS with a 0.3–0.4% precision. These 14CO2 records in maritime air show seasonal variations superimposed on normal exponential decreasing trends with a time constant of about 16 yr. The Δ14C values in the Northern Hemisphere are lower those in the Southern Hemisphere by 3–4 during 1994–2002. The Northern Hemisphere record shows relatively high seasonality (2.3 ± 1.5) as compared with the Southern Hemisphere (1.3 ± 1.2). The maximum values of seasonal cycles appear in late autumn and early winter in the Northern and Southern Hemispheres, respectively. Oscillations of 1–10 yr over the western Pacific are found to correlate possibly with the El Niño/Southern Oscillation (ENSO) events.


MAUSAM ◽  
2022 ◽  
Vol 53 (3) ◽  
pp. 349-358
Author(s):  
R. P. KANE

The 12-monthly running means of CFC-11 and CFC-12 were examined for 1977-1992. As observed by earlier workers, during 1977-1988, there was a rapid, almost linear increase of these compounds, ~70% in the northern and ~77% in the southern hemisphere. From 1988 up to 1992, growth rates were slower, more so for CFC-11 in the northern hemisphere. Superposed on this pattern were QBO, QTO (Quasi-Biennial and Quasi-Triennial Oscillations). A spectral analysis of the various series indicated the following. The 50 hPa low latitude zonal wind had one prominent QBO peak at 2.58 years and much smaller peaks at 2.00 (QBO) and 5.1 years. The Southern oscillation index represented by (T-D), Tahiti minus Darwin atmospheric pressure, had a prominent peak at 4.1 years and a smaller peak at 2.31 years. CFC-11 had only one significant peak at 3.7 years in the southern hemisphere, roughly similar to the 4.1 year (T-D) peak. CFC-12 had prominent QBO (2.16-2.33 years) in both the hemispheres and a QTO (3.6 years) in the southern hemisphere. For individual locations, CFC-11 showed barely significant QBO in the range (1.95-3.07 years), while CFC 12 showed strong QBO in the range (1.86-2.38 years). The difference in the spectral characteristics of CFC-11 and CFC 12 time series is attributed to differences in their lifetimes (44 and 180 years), source emission rates and transport processes.


2021 ◽  
Author(s):  
Lian-Yi Zhang ◽  
Yan Du ◽  
Wenju Cai ◽  
Zesheng Chen ◽  
Tomoki Tozuka ◽  
...  

<p>This study identifies a new triggering mechanism of the Indian Ocean Dipole (IOD) from the Southern Hemisphere. This mechanism is independent from the El Niño/Southern Oscillation (ENSO) and tends to induce the IOD before its canonical peak season. The joint effects of this mechanism and ENSO may explain different lifetimes and strengths of the IOD. During its positive phase, development of sea surface temperature cold anomalies commences in the southern Indian Ocean, accompanied by an anomalous subtropical high system and anomalous southeasterly winds. The eastward movement of these anomalies enhances the monsoon off Sumatra-Java during May-August, leading to an early positive IOD onset. The pressure variability in the subtropical area is related with the Southern Annular Mode, suggesting a teleconnection between high-latitude and mid-latitude climate that can further affect the tropics. To include the subtropical signals may help model prediction of the IOD event.</p>


2019 ◽  
Vol 11 (3) ◽  
pp. 683-695 ◽  
Author(s):  
Taufik R. Syachputra ◽  
Ivonne M. Radjawane ◽  
Rina Zuraida

Variabilitas iklim dapat mempengaruhi sifat sedimen yang terendapkan di dasar laut. Salah satu sifat sedimen yang dipengaruhi oleh iklim adalah besar butir. Penelitian ini bertujuan untuk menguji hubungan antara besar butir dengan variabilitas iklim menggunakan sampel core GM01-2010-TJ22 dari Muara Gembong, Teluk Jakarta, muara sungai Citarum. Sampel core diambil pada tahun 2010 dengan menggunakan Kapal Riset Geomarin I oleh Pusat Penelitian dan Pengembangan Geologi Kelautan (P3GL). Pengukuran besar butir dilakukan dengan menggunakan Mastersizer 2000. Hasil pengukuran ditampilkan dalam seri waktu dari tahun 2001 sampai 2010. Hasil analisis besar butir sampel sedimen dikorelasikan secara statistik dengan fenomena musiman (monsun), tahunan dan antar tahun (El Niño/La Niña dan Dipole Mode). Verifikasi data dilakukan dengan menggunakan data sekunder temperatur permukaan laut dari citra satelit di sekitar lokasi sampel dan data curah hujan di Bekasi. Hasil verifikasi menunjukkan bahwa peningkatan curah hujan di sekitar daerah hilir Sungai Citarum diikuti dengan penurunan temperatur permukaan laut dan peningkatan ukuran rata-rata besar butir. Hasil yang didapat dalam uji statistika menunjukkan bahwa perubahan ukuran besar butir sampel sedimen di Muara Gembong memiliki korelasi signifikan dengan Multivariate ENSO (El Niño Southern Oscillation) Index (MEI), Ocean Niño Index (ONI), Dipole Mode Index (DMI) dan Australian Monsoon Index (AUSMI). Hasil tersebut menunjukkan bahwa besar butir sedimen dasar laut potensial digunakan untuk mengetahui variabilitas iklim di sekitar Teluk Jakarta.


Sign in / Sign up

Export Citation Format

Share Document