scholarly journals Characterization of Requeijão and technological optimization of its manufacturing process

1996 ◽  
Vol 30 (3-4) ◽  
pp. 363-376 ◽  
Author(s):  
M.E. Pintado ◽  
J.A.Lopes da Silva ◽  
F.X. Malcata
Author(s):  
Nicholas Randall ◽  
Rahul Premachandran Nair

Abstract With the growing complexity of integrated circuits (IC) comes the issue of quality control during the manufacturing process. In order to avoid late realization of design flaws which could be very expensive, the characterization of the mechanical properties of the IC components needs to be carried out in a more efficient and standardized manner. The effects of changes in the manufacturing process and materials used on the functioning and reliability of the final device also need to be addressed. Initial work on accurately determining several key mechanical properties of bonding pads, solder bumps and coatings using a combination of different methods and equipment has been summarized.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Daniel Aparecido Lopes Vieira da Cunha ◽  
Paulo Inforçatti Neto ◽  
Kelli Cristina Micocci ◽  
Caroline Faria Bellani ◽  
Heloisa Sobreiro Selistre-de-Araujo ◽  
...  

Scaffolds of poly(ε-caprolactone) (PCL) and their biocomposites with 0, 1, 3, and 5 wt.% Biosilicate® were fabricated by the generative manufacturing process coupled with a vertical miniscrew extrusion head to application for restoration of bone tissue. Their morphological characterization indicated the designed 0°/90° architecture range of pore sizes and their interconnectivity is feasible for tissue engineering applications. Mechanical compression tests revealed an up to 57% increase in the stiffness of the scaffold structures with the addition of 1 to 5 wt.% Biosilicate® to the biocomposite. No toxicity was detected in the scaffolds tested by in vitro cell viability with MC3T3-E1 preosteoblast cell line. The results highlighted the potential application of scaffolds fabricated with poly(ε-caprolactone)/Biosilicate® to tissue engineering.


2020 ◽  
Author(s):  
Perdinan Sinuhaji ◽  
Awan Maghfirah ◽  
Fauzi Handoko

2005 ◽  
Vol 284-286 ◽  
pp. 47-50 ◽  
Author(s):  
Claudia P. García ◽  
C. Paucar ◽  
J. Gaviria ◽  
Alicia Durán

The synthetic hydroxyapatite is a very useful material for numerous applications in medicine as a biomaterial. One of the most economic manufacturing process is the precipitation route. In the present work, synthetic hydroxyapatite was prepared using the precipitation route, starting with aqueous solutions of calcium nitrate (Ca(NO3).4H2O ) and ammonium phosphate (H2(PO4)NH4). The effects of physical-chemical variables such as pH, temperature, time of agitation, ageing time and heat treatment of the mixture were evaluated. The characterization of the samples obtained in different conditions made possible to conclude about the optimal values of the studied variables for the synthesis of this material in laboratory conditions.


2018 ◽  
Author(s):  
M.-A. Langevin ◽  
A. Huot ◽  
S. Boubanga ◽  
P. Lagueux ◽  
É. Guyot

Aluminum-silicon alloys acquiring extensive industrial attention due to their superior resistance to rate of wear and elevated strength to weight ratio properties. Though the properties of the materials substantially depend on the manufacturing process they involve. Thus many industries focusing on new manufacturing methods to produce high-performance alloys. In this present study, AlSi (16-18) alloys were prepared by new CRSS (combined rheo stir squeeze) casting method with rapid-solidification process under T-6 condition. CRSS-T6 as casting process enhances the microstructural and mechanical properties significantly by 40-70%. Whereas, the maximum value of hardness (179.37) was found with AlSi17Cu3.5Mg0.8 with CRSS-T6. The improvements in hardness and elastic properties were mainly ascribed to size, distribution, and morphology of Si-particles because of its manufacturing process. SEM, advanced metallurgical microstructure and EDS analysis techniques are used for the surface morphologies observation. Moreover, Brinell hardness tester and Tensometer are used for the characterization of mechanical properties


Author(s):  
Kinam Park ◽  
Andrew Otte ◽  
Farrokh Sharifi ◽  
John Garner ◽  
Sarah Skidmore ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document