The impact of microbiological tools on mathematical modelling of biological wastewater treatment

1997 ◽  
Vol 36 (10) ◽  
2021 ◽  
Author(s):  
Govindaraddi Bheemaraddi Meti

The economic opportunity and quality of human life depend upon the continued availability of a life-sustaining environment. Understanding how we and other organisms affect, and are affected by, our environment is an important first step toward maintaining a sustainable future. As environmental engineers, we have to deal with natural systems and also expand our conceptualization of environmental engineering to include societal, legal and financial aspects. Water, by its very nature, is vital for the survival of life on the earth. If today, the struggle amongst the nations is for the resources such as oil, a survey of the United Nations suggests that in the future, it will be a struggle for drinking water. This shows how much importance we have to pay to the water and water quality to assure our future generation of a life-sustainable environment to live upon. As industrialization and population growth continues, the problem of eutrophication, which is the accelerated ageing of lakes and estuaries, etc., due to excess plant and algal growth has been and going to be witnessed all over the world. This is the result of discharges of nutrients like nitrogen and phosphorus to these water bodies. Hence, environmental engineers are working hard in designing the wastewater treatment system that could remove these pollutants in an efficient and cost effective way. The components in wastewater treatment processes may be conveniently categorized as physical, chemical and biological operations, but understanding the principles governing their behaviour is a prerequisite for successful process design. Biological wastewater treatment has seen a significant growth in the last 25 years. Particular occurrence was recognition of the many events that can happen simultaneously in biological processes and the role that the design engineer has in determining which predominates. The impact on process design of this recognition demanded that the present and future environmental engineers begin to think in multiple events rather than compartmentalizing them. These necessitate the need for better understanding of microbiology and reactor engineering to achieve the improved results in biological wastewater treatment. In the part of literature review, emphasis has been made to understand the nature of biochemical operations, kinetics, stoichiometry and some conflicts of the major reactions occurring in different environments and design processes. However, the important aspect of understanding and appreciating the complex interactions occurring among the micro-organisms that form the ecosystems in the biological process operations has been discussed in length in the section recent research part. Some conflicts have arisen in a single biological wastewater treatment system that simultaneously removes nitrogen and phosphorus. Therefore, resolving these conflicts and enhancing the process performance are the primary goal of this project work. An effort has been made to modify the process design and combine continuous stirred tank reactor and rotating biological contactors to overcome these conflicts. The combined hybrid system will provide two kinds bacteria population: suspended activated sludge bacteria and biofilm bacteria. Together, these can improve the efficiency of simultaneous removal of nitrogen and phosphorus from the municipal wastewater.


1997 ◽  
Vol 36 (10) ◽  
pp. 97-108
Author(s):  
P. C. Pollard ◽  
E. v. Münch ◽  
P. A. Lant ◽  
P. F. Greenfield

Biological systems are being used to treat an increasing range of complex wastes; domestic and industrial wastewaters containing nutrients and refractory organic compounds, soil sites and groundwater contaminated by organics, and organic solid residues. These treatment processes rely on micro-organisms and, more than ever before, must deliver higher quality outcomes at higher levels of reliability to protect the environment. At the same time, pressures to deliver cost-effective treatment have increased. The challenge for these biological treatment technologies and the associated engineering is to achieve the environmental and economic goals simultaneously. Mathematical modelling is an essential component in developing a detailed understanding of such processes, as well as design guidelines and suitable operating and control strategies. This paper provides a brief summary of the development of mathematical models for biological waste treatment systems, why they have become increasingly complex and how certain microbiological tools can provide the experimental means to validate more complex segregated and structured models of biological behaviour. With a number of specific modelling examples in the field of wastewater treatment, we illustrate the potential of these modern microbiological tools and their implications for gaining an improved understanding of biological waste treatment.


1991 ◽  
Vol 23 (4-6) ◽  
pp. 1011-1023 ◽  
Author(s):  
Willi Gujer ◽  
Mogens Henze

The matrix format for the presentation of biokinetic models is explained with a simple model and expanded for the ‘Activated Sludge Model No. 1' of the IAWPRC Task Group for Mathematical Modelling for Design and Operation of Biological Wastewater treatment. With the aid of a simulation program a complex activated sludge model which includes two organic substrates and nitrification is developed stepwise and compared to experimental results.


2021 ◽  
Author(s):  
Govindaraddi Bheemaraddi Meti

The economic opportunity and quality of human life depend upon the continued availability of a life-sustaining environment. Understanding how we and other organisms affect, and are affected by, our environment is an important first step toward maintaining a sustainable future. As environmental engineers, we have to deal with natural systems and also expand our conceptualization of environmental engineering to include societal, legal and financial aspects. Water, by its very nature, is vital for the survival of life on the earth. If today, the struggle amongst the nations is for the resources such as oil, a survey of the United Nations suggests that in the future, it will be a struggle for drinking water. This shows how much importance we have to pay to the water and water quality to assure our future generation of a life-sustainable environment to live upon. As industrialization and population growth continues, the problem of eutrophication, which is the accelerated ageing of lakes and estuaries, etc., due to excess plant and algal growth has been and going to be witnessed all over the world. This is the result of discharges of nutrients like nitrogen and phosphorus to these water bodies. Hence, environmental engineers are working hard in designing the wastewater treatment system that could remove these pollutants in an efficient and cost effective way. The components in wastewater treatment processes may be conveniently categorized as physical, chemical and biological operations, but understanding the principles governing their behaviour is a prerequisite for successful process design. Biological wastewater treatment has seen a significant growth in the last 25 years. Particular occurrence was recognition of the many events that can happen simultaneously in biological processes and the role that the design engineer has in determining which predominates. The impact on process design of this recognition demanded that the present and future environmental engineers begin to think in multiple events rather than compartmentalizing them. These necessitate the need for better understanding of microbiology and reactor engineering to achieve the improved results in biological wastewater treatment. In the part of literature review, emphasis has been made to understand the nature of biochemical operations, kinetics, stoichiometry and some conflicts of the major reactions occurring in different environments and design processes. However, the important aspect of understanding and appreciating the complex interactions occurring among the micro-organisms that form the ecosystems in the biological process operations has been discussed in length in the section recent research part. Some conflicts have arisen in a single biological wastewater treatment system that simultaneously removes nitrogen and phosphorus. Therefore, resolving these conflicts and enhancing the process performance are the primary goal of this project work. An effort has been made to modify the process design and combine continuous stirred tank reactor and rotating biological contactors to overcome these conflicts. The combined hybrid system will provide two kinds bacteria population: suspended activated sludge bacteria and biofilm bacteria. Together, these can improve the efficiency of simultaneous removal of nitrogen and phosphorus from the municipal wastewater.


2021 ◽  
Vol 12 ◽  
Author(s):  
Viviane Runa ◽  
Jannis Wenk ◽  
Simon Bengtsson ◽  
Brian V. Jones ◽  
Ana B. Lanham

Phage bacteria interactions can affect structure, dynamics, and function of microbial communities. In the context of biological wastewater treatment (BWT), the presence of phages can alter the efficiency of the treatment process and influence the quality of the treated effluent. The active role of phages in BWT has been demonstrated, but many questions remain unanswered regarding the diversity of phages in these engineered environments, the dynamics of infection, the determination of bacterial hosts, and the impact of their activity in full-scale processes. A deeper understanding of the phage ecology in BWT can lead the improvement of process monitoring and control, promote higher influent quality, and potentiate the use of phages as biocontrol agents. In this review, we highlight suitable methods for studying phages in wastewater adapted from other research fields, provide a critical overview on the current state of knowledge on the effect of phages on structure and function of BWT bacterial communities, and highlight gaps, opportunities, and priority questions to be addressed in future research.


1998 ◽  
Vol 37 (1) ◽  
pp. 347-354 ◽  
Author(s):  
Ole Mark ◽  
Claes Hernebring ◽  
Peter Magnusson

The present paper describes the Helsingborg Pilot Project, a part of the Technology Validation Project: “Integrated Wastewater” (TVP) under the EU Innovation Programme. The objective of the Helsingborg Pilot Project is to demonstrate implementation of integrated tools for the simulation of the sewer system and the wastewater treatment plant (WWTP), both in the analyses and the operational phases. The paper deals with the programme for investigating the impact of real time control (RTC) on the performance of the sewer system and wastewater treatment plant. As the project still is in a very early phase, this paper focuses on the modelling of the transport of pollutants and the evaluation of the effect on the sediment deposition pattern from the implementation of real time control in the sewer system.


Membranes ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 461
Author(s):  
Fu Yang ◽  
Zhengkun Huang ◽  
Jun Huang ◽  
Chongde Wu ◽  
Rongqing Zhou ◽  
...  

Ultrafiltration is a promising, environment-friendly alternative to the current physicochemical-based tannery wastewater treatment. In this work, ultrafiltration was employed to treat the tanning wastewater as an upstream process of the Zero Liquid Discharge (ZLD) system in the leather industry. The filtration efficiency and fouling behaviors were analyzed to assess the impact of membrane material and operating conditions (shear rate on the membrane surface and transmembrane pressure). The models of resistance-in-series, fouling propensity, and pore blocking were used to provide a comprehensive analysis of such a process. The results show that the process efficiency is strongly dependent on the operating conditions, while the membranes of either PES or PVDF showed similar filtration performance and fouling behavior. Reversible resistance was the main obstacle for such process. Cake formation was the main pore blocking mechanism during such process, which was independent on the operating conditions and membrane materials. The increase in shear rate significantly increased the steady-state permeation flux, thus, the filtration efficiency was improved, which resulted from both the reduction in reversible resistance and the slow-down of fouling layer accumulate rate. This is the first time that the fouling behaviors of tanning wastewater ultrafiltration were comprehensively evaluated, thus providing crucial guidance for further scientific investigation and industrial application.


Sign in / Sign up

Export Citation Format

Share Document