A reply to remarks on the mechanistic model of transport processes in porous membranes

2003 ◽  
Vol 214 (2) ◽  
pp. 335-338 ◽  
Author(s):  
Armin Kargol ◽  
Marian Kargol
2018 ◽  
Vol 55 (11) ◽  
pp. 1611-1631 ◽  
Author(s):  
Andrea Dominijanni ◽  
Nicolò Guarena ◽  
Mario Manassero

The relevance of the semi-permeable properties of bentonites, which affect both their transport processes and mechanical behaviour, has been assessed through the experimental determination of three parameters: the reflection coefficient, ω; the osmotic effective diffusion coefficient, [Formula: see text]; and the swell coefficient, ϖ. Two multi-stage tests were conducted on a natural sodium bentonite, while varying both the specimen void ratio, e, and the solute concentration, cs, of the equilibrium sodium chloride (NaCl) solutions. The measured phenomenological parameters were interpreted through a mechanistic model, in which the electric charge of clay particles is taken into account via a single material parameter, [Formula: see text], referred to as the “solid charge coefficient”. A constant value of [Formula: see text] = 110 mmol/L was found to provide an accurate interpretation of the experimental data, at least within the investigated range of bentonite void ratios (3.33 ≤ e ≤ 4.18) and NaCl concentrations of the external bulk solutions (5 ≤ cs ≤ 90 mmol/L). The results support the hypothesis that both chemical osmosis and swelling pressure are macroscopic manifestations of the same interactions, which occur at the microscopic scale between the clay particles and the ions contained in the pore solution, and that both of them can be modelled through a single theoretical framework.


2020 ◽  
Author(s):  
Marco Piantini ◽  
Florent Gimbert ◽  
Alain Recking ◽  
Hervé Bellot

<p>Sediment transport processes and fluxes play a key role in fluvial geomorphology and hazard triggering. In particular, extreme floods characterized by highly concentrated flows set the pace of mountain landscape evolution, where the linkage between streams and sediment sources leads to strong solid inputs characterized by significant grain sorting processes. The main observation that river processes generate ground vibrations has led to the application of seismic methods for monitoring purposes, which provides an innovative system that overcomes traditional monitoring difficulties especially during floods. Mechanistic models have been proposed in the attempt to invert river flow properties such as sediment fluxes from seismic measurements. Although those models have recently been validated in the laboratory and in the field for low transport rates, it remains unknown whether they are applicable to extreme floods.</p><p>Here we carry a set of laboratory experiments in a steep (18% slope) channel in order to investigate the link between seismic noise and sediment transport under extreme flow conditions with highly concentrated sediment flows. The originality of this set-up is that instead of feeding the flume section directly as usually done, we feed with liquid and solid discharge a low slope storage zone connected to the upstream part of the steep channel. This allows us to produce sediment pulses of varying magnitude (up to the transport capacity) and granulometric composition, traveling downstream as a result of alternate phases of deposition and erosion occurring in the storage area. We measure flow stage, seismic noise, sediment flux and grain size distribution. We find that the previously proposed relationships between seismic power, sediment flux and grain diameter often do not hold in such sediment transport situations. We support that this is due to granular interactions occurring between grains of different sizes within the sediment mixture and leading to complex grain sorting processes. In particular, we observe that bigger grains do not directly impact the bed but rather roll over fines or smaller grains, such that observed seismic power is much lower than expected. These results constitute a starting point for the development of a new mechanistic model for seismic power generated by highly concentrated bedload sediment flows.</p>


Fluids ◽  
2018 ◽  
Vol 3 (4) ◽  
pp. 80 ◽  
Author(s):  
Parvaneh Heidari ◽  
Hassan Hassanzadeh

Long-term geological storage of CO2 in deep saline aquifers offers the possibility of sustaining access to fossil fuels while reducing emissions. However, prior to implementation, associated risks of CO2 leakage need to be carefully addressed to ensure safety of storage. CO2 storage takes place by several trapping mechanisms that are active on different time scales. The injected CO2 may be trapped under an impermeable rock due to structural trapping. Over time, the contribution of capillary, solubility, and mineral trapping mechanisms come into play. Leaky faults and fractures provide pathways for CO2 to migrate upward toward shallower depths and reduce the effectiveness of storage. Therefore, understanding the transport processes and the impact of various forces such as viscous, capillary and gravity is necessary. In this study, a mechanistic model is developed to investigate the influence of the driving forces on CO2 migration through a water saturated leakage pathway. The developed numerical model is used to determine leakage characteristics for different rock formations from a potential CO2 storage site in central Alberta, Canada. The model allows for preliminary analysis of CO2 leakage and finds applications in screening and site selection for geological storage of CO2 in deep saline aquifers.


2019 ◽  
Vol 63 (6) ◽  
pp. 637-650 ◽  
Author(s):  
Kevin McNally ◽  
Jean-Philippe Gorce ◽  
Henk A Goede ◽  
Jody Schinkel ◽  
Nick Warren

Abstract The dermal Advanced REACH Tool (dART) is a Tier 2 exposure modelling tool currently in development for estimating dermal exposure to the hands (mg min−1) for non-volatile liquid and solids-in-liquid products. The dART builds upon the existing ART framework and describes three mass transport processes [deposition (Dhands), direct emission and direct contact (Ehands), and contact transfer (Thands)] that may each contribute to dermal exposure. The mechanistic model that underpins the dART and its applicability domain has already been described in previous work. This paper describes the process of calibrating the mechanistic model such that the dimensionless score that results from encoding contextual information about a task into the determinants of the dART can be converted into a prediction of exposure (mg min−1). Furthermore, as a consequence of calibration, the uncertainty in a dART prediction may be quantified via a confidence interval. Thirty-six experimental studies were identified that satisfied the conditions of: (i) high-quality contextual information that was sufficient to confidently code the dART mechanistic model determinants; (ii) reliable exposure measurement data sets were available. From these studies, 40 exposure scenarios were subsequently developed. A non-linear log-normal mixed-effect model was fitted to the data set of Dhands,   Ehands, and    Thands scores and corresponding measurement data. The dART model was shown to be consistent with activities covering a broad range of tasks [spray applications, activities involving open liquid surfaces (e.g. dipping, mixing), handling of contaminated objects, spreading of liquid products, and transfer of products (e.g. pouring of liquid)]. Exposures resulting from a particular task were each dominated by one or two of the identified mass transport processes. As a consequence of calibration, an estimate of the uncertainty associated with a mechanistic model estimate is available. A 90% multiplicative interval is approximately a factor of six. This represents poorer overall precision than the (inhalation) ART model for dusts and vapours, although better than the ART model for mists. Considering the complexity of the conceptual model compared with the ART, the wide variety of exposure scenarios considered with differing dominant routes, and the particular challenges that result from the consideration of measurement data both above and beneath a protective glove, the precision of the calibrated dART mechanistic model is reasonable for well-documented exposure scenarios coded by experts. However, as the inputs to the model are based upon user judgement, in practical use, the reliability of predictions will be dependent upon both the competence of users and the quality of contextual information available on an exposure scenario.


MRS Bulletin ◽  
1999 ◽  
Vol 24 (3) ◽  
pp. 41-45 ◽  
Author(s):  
Stratis V. Sotirchos ◽  
Vasilis N. Burganos

The capability of membranes to affect differently, both qualitatively and quantitatively, the transport rates of chemical species of dissimilar chemical structure through their interior space renders them attractive for use in many separation problems. Extensive research efforts have thus been undertaken on the preparation and characterization of membrane materials and the study of the transport processes involved in their use in separation applications. The study of the transport of gaseous species through the pore space of porous membranes and the analysis and understanding of the mechanisms that are involved in this process are a very important, if not the most important, element in the development of membranebased separation processes.The resistance that a gaseous species encounters as it is transported through the pore space of a porous membrane is a function of its molecular properties, of its interaction with the material that makes up the walls of the pores, and of the membrane pore structure. Gaseous transport in pores can take place through various mechanisms, whose contribution to the overall transport rate of a particular species is, in general, determined by the strength of the interactions of the molecules of that species with the pore walls and by the relative magnitudes of three length scales that characterize the molecular size, the distance between pore walls, and the density of the fluid in the pore space.


2020 ◽  
Author(s):  
Tian-Gen Chang ◽  
Xin-Guang Zhu

ABSTRACTCrop yield is co-determined by photosynthetic potential of source organs, and pattern of partitioning and utilization of photosynthate among sink organs. Although correlation between source sink relation and grain yield has been studied for a century, a quantitative understanding of the metabolic basis of source sink interaction is lacking. Here, we describe a mechanistic model of Whole plAnt Carbon Nitrogen Interaction (WACNI), enabling precise prediction of plant physiological dynamics during the grain filling period by reconstructing primary metabolic and biophysical processes in source, sink and transport organs. To get a specified range of parameters required to quantify the enzymatic kinetics in rice, a data set is established based on case studies and natural variation surveys in the past decades. The parameterized model quantitatively predicts plant carbon and nitrogen budget upon various scenarios, ranging from field management and environmental perturbation to genetic manipulation, thus enabling dissection of the precise role of such alterations in crop yield formation. Model simulations further reveal the importance of re-allocating activity of carbon/nitrogen metabolic and transport processes for a plant physiological ideotype to maximize crop yield.


1995 ◽  
Vol 269 (1) ◽  
pp. F22-F30 ◽  
Author(s):  
I. Genestie ◽  
J. P. Morin ◽  
B. Vannier ◽  
G. Lorenzon

A high degree of functional polarity has been obtained in primary cultures of rabbit kidney proximal tubule cells grown on collagen IV-coated porous membranes. Tight confluency was attained 6 days after seeding and maintained for at least 6 more days, as shown by analysis of paracellular inulin diffusion. From day 6 onward, L-lactate, ammonia, and D-glucose concentration gradient and a pH difference of approximately 1 unit developed between the two nutrient medium compartments. Confluent monolayers expressed organic ion transport properties higher than those formerly reported for other cell models. Transcellular transport of 20 microM tetraethylammonium was directed from basal to apical compartment and was specifically inhibited by mepiperphenidol (1 mM). Unidirectional transport of 2.4 microM p-aminohippurate also occurred from basal to apical compartment, was saturable, and specifically inhibited by probenecid (1 mM). These results suggest that rabbit kidney proximal tubule cells, cultured under the experimental conditions described here, may be a useful model for the in vitro study of highly polarized renal transport processes.


Sign in / Sign up

Export Citation Format

Share Document