In vitro anti-Helicobacter pylori activity of Greek herbal medicines

2003 ◽  
Vol 88 (2-3) ◽  
pp. 175-179 ◽  
Author(s):  
George Stamatis ◽  
Panayiotis Kyriazopoulos ◽  
Stamatina Golegou ◽  
Aris Basayiannis ◽  
Spyros Skaltsas ◽  
...  
2005 ◽  
Vol 98 (3) ◽  
pp. 329-333 ◽  
Author(s):  
Yang Li ◽  
Chen Xu ◽  
Qiang Zhang ◽  
Jun Yan Liu ◽  
Ren Xiang Tan

Author(s):  
A. R. Crooker ◽  
W. G. Kraft ◽  
T. L. Beard ◽  
M. C. Myers

Helicobacter pylori is a microaerophilic, gram-negative bacterium found in the upper gastrointestinal tract of humans. There is strong evidence that H. pylori is important in the etiology of gastritis; the bacterium may also be a major predisposing cause of peptic ulceration. On the gastric mucosa, the organism exists as a spiral form with one to seven sheathed flagella at one (usually) or both poles. Short spirals were seen in the first successful culture of the organism in 1983. In 1984, Marshall and Warren reported a coccoid form in older cultures. Since that time, other workers have observed rod and coccal forms in vitro; coccoid forms predominate in cultures 3-7 days old. We sought to examine the growth cycle of H. pylori in prolonged culture and the mode of coccoid body formation.


2007 ◽  
Vol 43 (3) ◽  
pp. 121-127
Author(s):  
R. Allem ◽  
FZ. Elkebir ◽  
H. Guetarni
Keyword(s):  

Planta Medica ◽  
2008 ◽  
Vol 74 (09) ◽  
Author(s):  
C Cwikla ◽  
K Schmidt ◽  
A Matthias ◽  
KM Bone ◽  
RP Lehmann ◽  
...  

Author(s):  
Waras Nurcholis ◽  
Edy Djauhari Purwakusumah ◽  
Mono Rahardjo ◽  
Latifah K. Darusman

Temulawak (Curcuma  xanthorrhizaRoxb.) belongs to the family Zingiberaceae, has been empirically used as herbal medicines. The research was aimed to evaluate three promising lines of Temulawak based on their high bioactive contents (xanthorrhizol and curcuminoid) and its in vitro bioactivity (antioxidant and toxicity), and to obtain information on agrobiophysic environmental condition which produced high bioactive compounds. The xanthorrhizol and curcuminoid contents were measured by HPLC. In vitro antioxidant and toxicity were determined by DPPH (1,1-diphenyl-2-picryl-hydrazyl) method and BSLT (Brine Shrimp Lethality Test). The result showed that promising line A produced the highest yield of bioactive and bioactivity, i.e. 0.157 and 0.056 g plant-1of xanthorrizol and curcuminoid respectively. The IC50 of antioxidant activity was 65.09 mg L-1and LC50of toxicity was 69.05 mg L-1. In this study, Cipenjo had the best temulawak performance than two other locations. According to the agrobiophysic parameters, Cipenjo environmental condition was suitable for temulawak cultivation with temperature 28-34 ºC, rainfall ± 223.97 mm year-1 and sandy clay soil. Keywords: antioxidant, curcuminoid, promising lines, temulawak, xanthorrhizol


Author(s):  
A.V. Zhigunov ◽  
◽  
Q.T. Nguyen

The increasing need for herbal medicines requires the study of not only biological resources of medical plants, but also methods for their reproduction. Of special value are the medicinal plants that have a long history of success in traditional medicine. One of such plants is Eucommia ulmoides Oliv., which belongs to a rare relict species growing in natural conditions, for the most part, in the undergrowth of humid subtropical forests in China, mainly in the middle course of the Yangtze river. E. ulmoides compares favorably with most subtropical plants owing to its significant frost resistance, which makes it possible to cultivate it outside the humid subtropics. It has been widely introduced in Krasnodar Krai and in the Republic of Adygea (Russia) since the mid-20th century and successfully adapted to various environmental conditions in the Northwest Caucasus. The increasing demand for E. ulmoides bark can only be satisfied by laying out industrial plantations. However, the difficulties encountered in the traditional seed reproduction of E. ulmoides (dioecious species, pollen low quality, parthenocarpy, prolonged seed dormancy, irregular fruiting, long juvenile period, etc.) make scientists turn to modern biotechnological methods of plant propagation. While considering cultivation of planting material, we should focus on highly efficient methods that ensure stable and mass reproduction of the plants under study. An important role is played here by in vitro plant regeneration. The effectiveness of biotechnology methods is due to a reduction in timing of obtaining a large number of vegetative progeny of plants difficult for propagation, as well saving of the area required for their cultivation. The conditions for producing an aseptic culture of E. ulmoides were chosen based on the results of the studies. The highest degree of sterilization of E. ulmoides shoot segments was achieved when the explants were sequentially immersed first in 70 % ethanol (30 s) and then in 0.1 % mercuric chloride solution (5 min). With such a sterilization procedure, 63.3 % of the studied cuttings were made sterile, and 56.7 % of them proved to be viable. The optimal composition of the nutrient medium for regeneration of E. ulmoides microshoots has been determined: MS medium complemented with 1 mg/L 6-Benzylaminopurine (BAP) + 0.2 mg/L 1-Naphthaleneacetic acid (NAA). The best media for explant rooting are the following: 2/3 MS + 1.5 mg/L NAA + 30 g sucrose + 7 g agar; 2/3 MS + 1 mg/L NAA + 0.4 mg/L IBA + 30 g sucrose + 7 g agar.


2019 ◽  
Vol 19 (5) ◽  
pp. 376-382 ◽  
Author(s):  
Sachin Jangra ◽  
Gayathri Purushothaman ◽  
Kapil Juvale ◽  
Srimadhavi Ravi ◽  
Aishwarya Menon ◽  
...  

Background & Objective:Helicobacter pylori infection is one of the primary causes of peptic ulcer followed by gastric cancer in the world population. Due to increased occurrences of multi-drug resistance to the currently available antibiotics, there is an urgent need for a new class of drugs against H. pylori. Inosine 5′-monophosphate dehydrogenase (IMPDH), a metabolic enzyme plays a significant role in cell proliferation and cell growth. It catalyses guanine nucleotide synthesis. IMPDH enzyme has been exploited as a target for antiviral, anticancer and immunosuppressive drugs. Recently, bacterial IMPDH has been studied as a potential target for treating bacterial infections. Differences in the structural and kinetic parameters of the eukaryotic and prokaryotic IMPDH make it possible to target bacterial enzyme selectively.Methods:In the current work, we have synthesised and studied the effect of substituted 3-aryldiazenyl indoles on Helicobacter pylori IMPDH (HpIMPDH) activity. The synthesised molecules were examined for their inhibitory potential against recombinant HpIMPDH.Results:In this study, compounds 1 and 2 were found to be the most potent inhibitors amongst the database with IC50 of 0.8 ± 0.02µM and 1 ± 0.03 µM, respectively.Conclusion:When compared to the most potent known HpIMPDH inhibitor molecule C91, 1 was only four-fold less potent and can be a good lead for further development of selective and potent inhibitors of HpIMPDH.


2019 ◽  
Vol 16 (4) ◽  
pp. 392-400 ◽  
Author(s):  
Göknil Pelin Coşkun ◽  
Teodora Djikic ◽  
Sadık Kalaycı ◽  
Kemal Yelekçi ◽  
Fikrettin Şahin ◽  
...  

Background:The main factor for the prolongation of the ulcer treatment in the gastrointestinal system would be Helicobacter pylori infection, which can possibly lead to gastrointestinal cancer. Triple therapy is the treatment of choice by today's standards. However, observed resistance among the bacterial strains can make the situation even worse. Therefore, there is a need to discover new targeted antibacterial therapy in order to make success in the eradication of H. pylori infections.Methods:The targeted therapy rule is to identify the related macromolecules that are responsible for the survival of the bacteria. Thus, 2-[(2',4'-difluoro-4-hydroxybiphenyl-3-yl)carbonyl]-N- (substituted)hydrazinocarbothioamide (3-13) and 5-(2',4'-difluoro-4-hydroxybiphenyl-3-yl)-4- (substituted)-2,4-dihydro-3H-1,2,4-triazole-3-thiones (14-17) were synthesized and evaluated for antibacterial activity in vitro against H. pylori.Results:All of the tested compounds showed remarkable antibacterial activity compared to the standard drugs (Ornidazole, Metronidazole, Nitrimidazin and Clarithromycin). Compounds 4 and 13 showed activity as 2µg/ml MIC value.Conclusion:In addition, we have investigated binding modes and energy of the compounds 4 and 13 on urease enzyme active by using the molecular docking tools.


2020 ◽  
Vol 15 (3) ◽  
pp. 194-208
Author(s):  
Pravin Kumar ◽  
Dinesh Kumar Sharma ◽  
Mahendra Singh Ashawat

Atopic Dermatitis (AD) is a prolonged reverting skin ailment with characteristically distributed skin lesions. In the previous decades, researchers had shown a marked interest in AD due to its increased prevalence in developed countries. Although different strategies including biological and immune modulators are available for the treatment of AD, each has certain limitations. The researchers had shown considerable interest in the management of AD with herbal medicines. The establishment of herbal drugs for AD might eliminate local as well as systemic adverse effects associated with long term use of corticosteroids and also higher cost of therapy with biological drugs. The present review discusses the traditional East Asian herbal medicines and scientific data related to newer herbal extracts or compositions for the treatment of AD. In vivo animal models and in vitro cell cultures, investigated with herbal medicines to establish a possible role in AD treatment, have also been discussed in the paper. The paper also highlights the role of certain new approaches, i.e. pharmacopuncture, a combination of allopathic and herbal medicines; and novel carriers (liposomes, cubosomes) for herbal drugs on atopic skin. In conclusion, herbal medicines can be a better and safe, complementary and alternative treatment option for AD.


Sign in / Sign up

Export Citation Format

Share Document