042 Nitric oxide induces proteases and collagen production in dermal fibroblasts

1997 ◽  
Vol 15 (2) ◽  
pp. 109
Author(s):  
K. Omori ◽  
Mas. Ono ◽  
H. Ueki
Biomolecules ◽  
2018 ◽  
Vol 9 (1) ◽  
pp. 4 ◽  
Author(s):  
Joana Durão ◽  
Nuno Vale ◽  
Salomé Gomes ◽  
Paula Gomes ◽  
Cristina C. Barrias ◽  
...  

Nitric oxide (NO) is an endogenously produced molecule that has been implicated in several wound healing mechanisms. Its topical delivery may improve healing in acute or chronic wounds. In this study an antimicrobial peptide was synthesized which self-assembled upon a pH shift, forming a hydrogel. The peptide was chemically functionalized to incorporate a NO-donor moiety on lysine residues. The extent of the reaction was measured by ninhydrin assay and the NO release rate was quantified via the Griess reaction method. The resulting compound was evaluated for its antimicrobial activity against Escherichia coli, and its effect on collagen production by fibroblasts was assessed. Time-kill curves point to an initial increase in bactericidal activity of the functionalized peptide, and collagen production by human dermal fibroblasts when incubated with the NO-functionalized peptide showed a dose-dependent increase in the presence of the NO donor within a range of 0–20 μM.


Molecules ◽  
2020 ◽  
Vol 25 (6) ◽  
pp. 1331 ◽  
Author(s):  
Jung Hwan Oh ◽  
Fatih Karadeniz ◽  
Jung Im Lee ◽  
So Young Park ◽  
Youngwan Seo ◽  
...  

UV irradiation is one of the main causes of extrinsic skin aging. UV-mediated skin aging, also known as photoaging, causes excessive breakdown of extracellular matrix which leads skin to lose its elasticity and strength. Several phytochemicals are known to exert anti-photoaging effects via different mechanisms, partly due to their antioxidant properties. The current study has been carried out to determine the potential anti-photoaging properties of myricetin 3-O-β-d-galacto-pyranoside (M3G), a flavonol glycoside isolated from L. tetragonum, in UVA-irradiated in vitro models; HaCaT keratinocytes and human dermal fibroblasts (HDFs). UVA-induced changes in MMP-1 and collagen production have been observed in HaCaT keratinocytes and HDFs. Further, UVA-induced activation of MAPK signaling, and pro-inflammatory cytokine production have been investigated. TGFβ/Smad pathway has also been analyzed in UVA-irradiated HDFs. Treatment with M3G reversed the UVA-induced changes in MMP-1 and collagen production both in HaCaT keratinocytes and HDFs. UVA-mediated activation of p38, ERK and JNK MAPK activation was also inhibited by M3G treatment in HaCaT keratinocytes. In HDFs, M3G was able to upregulate the TGFβ/Smad pathway activation. In addition, M3G downregulated the UVA-induced pro-inflammatory cytokines in keratinocytes and HDFs. It has been suggested that the M3G has exerted potential antiphotoaging properties in vitro, by attenuating UVA-induced changes in MMP-1 and collagen production in keratinocytes and dermal fibroblasts.


2020 ◽  
Vol 7 (2) ◽  
pp. 51
Author(s):  
Jenna L. Gordon ◽  
Melissa M. Reynolds ◽  
Mark A. Brown

Neuroblastoma, the most common extracranial solid tumor in children, accounts for 15% of all pediatric cancer deaths. Pharmaceutical applications of S-Nitrosylation, which, under normal conditions is involved with a host of epigenetic and embryological development pathways, have exhibited great potential for use as adjuvant therapeutics in the clinical management of cancer. Herein, an evaluation of the impact of nitric oxide (NO) as a potent anticancer agent on murine neuroblastoma cells is presented. Excitingly cell viability, colony formation, and non-carcinogenic cell analysis illustrate the significance and practicality of NO as a cytotoxic anticancer therapeutic. Resazurin, WST-8 (2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt), and MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphyltetrazolium bromide) assays consistently displayed a moderate, ~20–25% reduction in cell viability after exposure to 1 mM S-Nitrosoglutathione (GSNO). A colony formation assay demonstrated that treated cells no longer exhibited colony formation capacity. Identically GSNO-treated Adult Human Dermal Fibroblasts (HDFa) exhibited no decrease in viability, indicating potential discrimination between neoplastic and normal cells. Collectively, our findings indicate a potential application for NO as an adjuvant therapeutic in the clinical management of neuroblastoma.


2017 ◽  
Vol 37 (9) ◽  
pp. 1117-1124 ◽  
Author(s):  
Natalia Majewska ◽  
Ilona Zaręba ◽  
Arkadiusz Surażyński ◽  
Anna Galicka

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4597-4597
Author(s):  
Elena Marinelli Busilacchi ◽  
Jacopo Olivieri ◽  
Nadia Viola ◽  
Antonella Poloni ◽  
Giorgia Mancini ◽  
...  

Abstract INTRODUCTION Dermal fibrosis and sclerosis are pathologic features shared by Scleroderma-like chronic graft-versus-host disease (Scl-cGVHD) and Systemic Scleroderma (SSc). Moreover, in both diseases stimulating anti-PDGF-R antibodies were found, leading to abnormal collagen production by fibroblasts, eventually contributing to organ damage. Targeted therapy with tyrosine kinase inhibitors (TKI) like Imatinib and Nilotinib demonstrated clinical efficacy in Scl-cGVHD; however, the molecular basis underpinning the clinical effects are not fully elucidated. We investigated here a potential terapeutical target of the dermal cGVHD pathophysiology: the cellular and molecular features of pathological skin fibroblasts (GVHD-Fbs) and the efficacy of Nilotinib on fibrosis modulation. MATERIALS AND METHODS Fibroblast cultures (GVHD-Fbs) were obtained from skin biopsies of affected skin from 6 patients with active cGVHD, control fibroblasts are Human Dermal Fibroblasts adult (n-FBS). Fibroblasts were characterized by flow cytometry (FACS CANTO II) for the detection of molecules: CD10, CD14, CD29, CD34, CD44, CD45, CD73, CD90, CD105, CD106, CD117, CD146. In order to evaluate the adipogenic, osteogenic or chondrogenic differentiation cGVHD-Fbs and n-Fbs (n = 3) were cultured in differentiation medium (respectively NH AdipoDiff, NH OsteoDiff, NH ChondroDiff) after four passages. Intracellular lipid droplets indicated adipogenic lineage differentiation. The differentiation potential in the osteogenic lineage was evaluated by calcium accumulation, as assessed by Alizarin Red. The pellet obtained from chondrogenic lineage differentiation was embedded in paraffin, cut in the microtome and the sections placed on a glass slide were stained with Alcian Blue [Junker JP, Cells Tissues Organs, 2010]. For incubation with Nilotinib (Santa Cruz Biotechnology) the 10 mM stock solution was diluted to the final concentration in DMEM supplemented with 0,2% FBS (starvation), added to cell cultures at a concentration of 1 μM or 2 μM for 48h, which covered the mean plasma levels in cGVHD patients after standard doses. In subsets of experiments, after starvation, fibroblasts were stimulated with recombinant TGFβ at 10 ng/ml (GIBCO, Invitrogen). After incubation, total RNA was isolated and reverse transcribed. Gene expression was quantified by real-time PCR using the Sybr Green Mix for qPCR. Specific primer pairs for COL1α1 and COL1α2 were designed with the Primer 3 software. The transcript levels were normalized for the expression of GAPDH constitutive gene. Differences were calculated with the threshold cycle (Ct) and the comparative Ct method for relative quantification. RESULTS GVHD-Fbs are morphologically and phenotypically similar to normal fibroblasts (n-FBS). GVHD-FBS did not show a different immunophenotype from n-Fbs, both in early and late culture passages. Also, no differences were noted between GVHD-Fbs and n-FBS in terms of multilineage differentiation capacity towards the adipogenic, osteogenic and chondrogenic lineage. Gene expression of COL1α1 and COL1α2 in GVHD-Fbs was respectively 4 and 1,6 times higher compared to n-FBS (p = 0.02). However, the increased collagen expression was exclusive of early-passage GVHD-Fbs; in late-passage (>4) GVHD-Fbs, collagen mRNA levels were similar to n-FBS (p=0.6 for COL1α1; p=0.4 for COL1α2). As expected, TGFβ boosted collagen expression in n-FBS, but it did not increase COL1α1 and COL1α2 mRNA levels in GVHD-Fbs. Therapeutic doses of Nilotinib (1μM) were able to reduce expression of COL1α1 and COL1α2 mRNA by 86,5% and 49%, respectively (p <0.01). CONCLUSIONS Early-passage GVHD-Fbs are a valuable cellular model to study the molecular mechanisms of cGVHD fibrosis in vitro, as they show increased collagen production, which is a strong hallmark of fibrosis. The failure to increase collagen expression in GVHD-Fbs upon TGFβ stimulation indirectly supports a TGFβ-dependent mechanism underpinning the fibrogenesis. Finally Nilotinib inhibits in vitro collagen expression in GVHD-Fbs confirming that the activity of TKI in Scl-cGVHD is mediated, at least in part, by direct antifibrotic effects on the fibroblasts. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document