Tu-P8:298 Protein structures for regeneration of vascular wall

2006 ◽  
Vol 7 (3) ◽  
pp. 250
Author(s):  
E. Filova ◽  
E. Brynda ◽  
L. Bacakova ◽  
M. Houska ◽  
T. Riedel
2021 ◽  
Vol 22 (24) ◽  
pp. 13267
Author(s):  
Ekaterina Mikhailovna Stakhneva ◽  
Evgeniia Vitalievna Striukova ◽  
Yulia Igorevna Ragino

The review is devoted to the analysis of literature data related to the role of proteomic studies in the study of atherosclerotic cardiovascular diseases. Diagnosis of patients with atherosclerotic plaques before clinical manifestations is an arduous task. The review presents the results of research on the new proteomic potential biomarkers of coronary heart disease, coronary atherosclerosis, acute coronary syndrome, myocardial infarction, carotid artery atherosclerosis. Also, the analysis of literature data on proteomic studies of the vascular wall was carried out. To assess the involvement of proteins in the pathological process of atherosclerosis, it is important to investigate the specific relationships between proteins in the arteries, expression and concentration of proteins. The development of proteomic technologies has made it possible to analyse the number of proteins associated with the development of the disease. Analysis of the proteomic profile of the vascular wall in atherosclerosis can help to detect possible diagnostically significant protein structures or potential biomarkers of the disease and develop novel approaches to the diagnosis of atherosclerosis and its complications.


Author(s):  
Masahiro Ono ◽  
Kaoru Aihara ◽  
Gompachi Yajima

The pathogenesis of the arteriosclerosis in the acute myocardial infarction is the matter of the extensive survey with the transmission electron microscopy in experimental and clinical materials. In the previous communication,the authors have clarified that the two types of the coronary vascular changes could exist. The first category is the case in which we had failed to observe no occlusive changes of the coronary vessels which eventually form the myocardial infarction. The next category is the case in which occlusive -thrombotic changes are observed in which the myocardial infarction will be taken placed as the final event. The authors incline to designate the former category as the non-occlusive-non thrombotic lesions. The most important findings in both cases are the “mechanical destruction of the vascular wall and imbibition of the serous component” which are most frequently observed at the proximal portion of the coronary main trunk.


2019 ◽  
Vol 476 (24) ◽  
pp. 3835-3847 ◽  
Author(s):  
Aliyath Susmitha ◽  
Kesavan Madhavan Nampoothiri ◽  
Harsha Bajaj

Most Gram-positive bacteria contain a membrane-bound transpeptidase known as sortase which covalently incorporates the surface proteins on to the cell wall. The sortase-displayed protein structures are involved in cell attachment, nutrient uptake and aerial hyphae formation. Among the six classes of sortase (A–F), sortase A of S. aureus is the well-characterized housekeeping enzyme considered as an ideal drug target and a valuable biochemical reagent for protein engineering. Similar to SrtA, class E sortase in GC rich bacteria plays a housekeeping role which is not studied extensively. However, C. glutamicum ATCC 13032, an industrially important organism known for amino acid production, carries a single putative sortase (NCgl2838) gene but neither in vitro peptide cleavage activity nor biochemical characterizations have been investigated. Here, we identified that the gene is having a sortase activity and analyzed its structural similarity with Cd-SrtF. The purified enzyme showed a greater affinity toward LAXTG substrate with a calculated KM of 12 ± 1 µM, one of the highest affinities reported for this class of enzyme. Moreover, site-directed mutation studies were carried to ascertain the structure functional relationship of Cg-SrtE and all these are new findings which will enable us to perceive exciting protein engineering applications with this class of enzyme from a non-pathogenic microbe.


1986 ◽  
Vol 25 (03) ◽  
pp. 139-142 ◽  
Author(s):  
A. Mauriello ◽  
Y. Sambuy ◽  
E. Bonanno ◽  
A. Orlandi ◽  
G. Palmieri ◽  
...  

SummaryAmong the numerous existing computer-based systems for processing pathological data, none contains sufficient space for encoding data on the basic cytological or histological changes of a certain organ or tissue, upon which the final diagnosis is based.An “analytical record” was constructed listing all the basic changes that can be encountered in the various pathological conditions of the vascular wall. The data collected on the “analytical record” were coded by means of an alphanumeric code and stored in an Apple II 48 K minicomputer.The advantages of this system include the computerization of the data by non-specialized personnel and the possibility to’ quantitatively analyze the histocytopathological parameters used for diagnosis in vascular pathology. This coding system may easily be adapted, with minor modifications, to the histopathological study of other organs and tissues.


1988 ◽  
Vol 59 (02) ◽  
pp. 225-230 ◽  
Author(s):  
J P Maffrand ◽  
A Bernat ◽  
D Delebassée ◽  
G Defreyn ◽  
J P Cazenave ◽  
...  

SummaryThe relative importance of ADP, arachidonic acid metabolites and serotonin as thrombogenic factors was evaluated in rats by comparing, after oral administration, the effects of two inhibitors of ADP-induced platelet aggregation (ticlopidine and PCR 4099), three cyclo-oxygenase inhibitors (aspirin, triflusal and indobufen) and a selective serotonin 5HT2 receptor antagonist (ketanserin) on platelet aggregation, in four platelet-dependent thrombosis models and on bleeding time. Platelet aggregation induced by ADP and collagen was completely inhibited by ticlopidine and PCR 4099 whereas only the collagen aggregation was reduced by the cyclo-oxygenase inhibitors. Ketanserin or a depletion of platelet serotonin by reserpine did not affect platelet aggregation. Ticlopidine and PCR 4099 greatly prolonged rat tail transection bleeding time. This is probably related to their known ability to inhibit ADP-mediated platelet aggregation. In contrast, the cyclooxygenase inhibitors did not affect bleeding time at all. Reserpine and ketanserin prolonged bleeding time by interfering with the action of serotonin on the vascular wall. Ticlopidine and PCR4099 were very potent antithrombotics in all the models. Aspirin, only at a high dose, inhibited poorly thrombus formation on a silk thread in an arterio-venous shunt, suggesting that the inhibition of cyclo-oxygenase was not responsible. Triflusal was inactive in all models while indobufen slightly reduced thrombus formation in the silk thread and metallic coil models. Ketanserin and reserpine reduced thrombus only in the metallic coil model. Thrombus formation was greatly reduced in fawn-hooded rats, which lack ADP in their platelet dense granules because of a genetic storage pool deficiency. Taken together, the results obtained with the drugs and with the fawn-hooded rats support the concept that ADP plays a key role in thrombogenesis in rats.


1987 ◽  
Vol 57 (03) ◽  
pp. 263-268 ◽  
Author(s):  
P Toulon ◽  
C Jacquot ◽  
L Capron ◽  
M -O Frydman ◽  
D Vignon ◽  
...  

SummaryHeparin enhances the inhibition rate of thrombin by both antithrombin III (AT III) and heparin cofactor II (HC II). We studied the activity of these two plasma proteins in patients with chronic renal failure (CRF) undergoing regular hemodialysis as their heparin requirements varied widely. In 77 normal blood donors, normal ranges (mean ± 2 SD) were 82-122% for AT III and 65-145% for HC II. When compared with these controls 82 dialyzed CRF patients had a subnormal AT III activity and a significantly (p <0.001) lower HC II activity. To evaluate the effect of hemodialysis we compared AT III, HC II and total proteins in plasma before and after dialysis in. 24 patients (12 with normal and 12 with low basal HC II activity). AT III and HC II activities significantly (p <0.001) increased in absolute value. When related to total plasma proteins, in order to suppress the influence of hemoconcentration induced by dialysis, AT III decreased significantly (p <0.01) whereas HC II increased slightly but significantly (p <0.01) in the 12 patients with low initial HC II activity. The decrease of AT III induced by heparin administrated during dialysis is likely to account for this relative decrease of AT III activity. A modification of the distribution of both HC II and heparin between the vascular wall and the circulating blood is evoked to explain the relative increase in HC II activity and the need for higher heparin dosage in patients with low HC II levels.


1982 ◽  
Vol 48 (02) ◽  
pp. 201-203 ◽  
Author(s):  
N A Marsh ◽  
P J Gaffney

SummaryThe effect of strenuous exercise on the fibrinolytic and coagulation mechanisms was examined in six healthy male subjects. Five min bicycle exercise at a work-rate of 800 to 1200 kpm. min−1 produced an abrupt increase in plasma plasminogen activator levels which disappeared after 90 min. However, there was no change in early or late fibrin degradation products nor was there a change in fibrinopeptide A levels or βthromboglobulin levels after exercise although activated partial thromboplastin times were significantly shortened. It is concluded that strenuous exercise does not produce any real increase in fibrinogen-fibrin conversion nor any real increase in the breakdown of these proteins. The role of exercise-induced release of plasminogen activator remains unclear, but probably helps to maintain plasma levels in a discontinuous manner concurrently with the continuous low-level secretion from the vascular wall. The shortening of partial thromboplastin time may be due to the raised levels of plasminogen activator changing the activation state of other coagulation factors.


Sign in / Sign up

Export Citation Format

Share Document