Aberrant DNA methylation in 5′ regions of DNA methyltransferase genes in aborted bovine clones

2008 ◽  
Vol 35 (9) ◽  
pp. 559-568 ◽  
Author(s):  
Jinghe Liu ◽  
Xingwei Liang ◽  
Jiaqiao Zhu ◽  
Liang Wei ◽  
Yi Hou ◽  
...  
2004 ◽  
Vol 24 (3) ◽  
pp. 1270-1278 ◽  
Author(s):  
Jonathan C. Cheng ◽  
Daniel J. Weisenberger ◽  
Felicidad A. Gonzales ◽  
Gangning Liang ◽  
Guo-Liang Xu ◽  
...  

ABSTRACT During tumorigenesis, tumor suppressor and cancer-related genes are commonly silenced by aberrant DNA methylation in their promoter regions. Recently, we reported that zebularine [1-(β-d-ribofuranosyl)-1,2-dihydropyrimidin-2-one] acts as an inhibitor of DNA methylation and exhibits chemical stability and minimal cytotoxicity both in vitro and in vivo. Here we show that continuous application of zebularine to T24 cells induces and maintains p16 gene expression and sustains demethylation of the 5′ region for over 40 days, preventing remethylation. In addition, continuous zebularine treatment effectively and globally demethylated various hypermethylated regions, especially CpG-poor regions. The drug caused a complete depletion of extractable DNA methyltransferase 1 (DNMT1) and partial depletion of DNMT3a and DNMT3b3. Last, sequential treatment with 5-aza-2′-deoxycytidine followed by zebularine hindered the remethylation of the p16 5′ region and gene resilencing, suggesting the possible combination use of both drugs as a potential anticancer regimen.


2019 ◽  
Vol 07 (01) ◽  
pp. 001-005
Author(s):  
Namita Sepolia ◽  
Deepti Jindal ◽  
Sandhya Kaushwaha ◽  
Varun Jindal ◽  
Monika Negi

AbstractEpigenetics is the study of potentially heritable changes in gene expression that does not involve changes in underlying DNA sequence. Epigenetic mechanisms play a crucial role in cellular proliferation, migration, and differentiation in both normal and neoplastic development. Epigenetic changes may be inherited and can occur during embryonal development or after birth. Once the change in DNA methylation takes place, following cell division the altered pattern is transferred into daughter cells by the action DNA methyltransferase enzyme, which recognizes hemi-methylated sites and methylates newly synthesized DNA formed during replication. Recently, it has been suggested that aberrant DNA methylation of cytosine-phosphate-guanine (CpG) islands is a common event in odontogenic tumors. Expression of DNA methyltransferase 1,3A,3B has been noted in various odontogenic tumors. Thus, this review aims to study the various epigenetic pathways that are altered in odontogenic tumors.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2571-2571
Author(s):  
Yong Lei ◽  
Margaret A. Goodell

Abstract At the top of the hematopoietic hierarchy are hematopoietic stem cells (HSCs), which reside in the bone marrow and are characterized by the ability to self-renew or differentiate into various types of mature blood cells. The self-renewal capacity of HSCs relies on the accurate transmission of epigenetic marks to their progeny. Our lab has shown previously that, despite global hypomethylation, DNA hypermethylation frequently occurs on Polycomb group protein (PcG) target genes and many tumor suppressor genes in aged HSCs (Sun et al.Cell Stem Cell. 2014). At the same time, such epigenetic marks are correctly maintained in young HSCs. These observations indicate the presence of epigenetic maintenance systems that deteriorate with age. Currently, the molecular mechanisms through which aberrant DNA hypermethylation accumulates only with age are unclear. To address this gap in knowledge, we examined the maintenance and clearance of forced DNA methylation in murine embryonic stem cells (ESCs) using a CRISPR/dCas9-based targeted DNA methylation tool, dCas9-MQ1147 (Lei et al, Nature Communication. 2017). We forcibly methylated genes that are bound in ESCs by PcG, including Runx1, Gata2, and Hoxa loci. Surprisingly, we found that the exogenous methylation induced by dCas9-MQ1147 was efficiently removed from the target sites during cell proliferation, indicating that methylation status is predetermined and maintained by local genetic and epigenetic marks. To understand which demethylation mechanism is responsible for the removal of the exogenous aberrant DNA methylation in our model, we treated both human somatic cells and murine ESCs with cell cycle arrest drugs, including selective ATP-competitive inhibitor of CDK1 (Ro-3306), selective Ca2+/calmodulin-dependent protein kinase inhibitor (KN93), and microtubule formation inhibitor (Paclitaxel) after inducing targeted methylation. Following treatment, we observed that cell cycle arrest cannot delay passive demethylation at the hypermethylated sites, indicating the removel of aberrant methylation is DNA duplication independent. To further investigate the demethylation mechanism herein, we next validated the contribution of DNA hydroxymethylation enzyme Ten-eleven Translocation (TET) activity in the Tet1/2/3 triple knockout (TKO) mESCs. Time-dependent experiments showed that TKO mESCs had a significant exogenous methylation retention compared to their wild-type counterparts. These data indicate that TET family proteins are recruited to remove aberrant methylation from the unmethylated PcG binding region via TDG or base excision repair, but not inaccurate maintenance by DNA methyltransferase 1 (DNMT1). To determine which TET protein or proteins contribute to the maintenance of predetermined unmethylation status, we used prokaryote DNA methyltransferase MQ1 wild-type protein to generate genome-wide hypermethylation in wild-type mESCs. We detected that TET1 was the most highly upregulated TET protein, with over 5-fold upregulation, following induced hypermethylation. Furthermore, by applying the novel Degron targeted degradation technique, we specific remove the expressed MQ1 protein and found that the degradation of MQ1 led to the reduction of Tet1 overexpression. These data indicate that TET1 participates in the removal of aberrant DNA methylation in mESCs. Overall, this study suggests that a proofreading mechanism at the PcG-targeted region recognizes aberrant DNA methylation and recruits TET1 to restore its original unmethylated status. The dysregulation of this mechanism in aging HSCs may lead to the accumulation of methylation abnormalities during proliferation. This study sheds light on an important molecular mechanisms responsible for maintaining the epigenetic status in ESCs and provides insight into how aberrant DNA methylation accumulates in these cells over time. Figure. Figure. Disclosures No relevant conflicts of interest to declare.


2019 ◽  
Vol 18 (28) ◽  
pp. 2448-2457 ◽  
Author(s):  
Zehao Zhou ◽  
Huan-Qiu Li ◽  
Feng Liu

Aberrant DNA methylation at the 5-position of cytosine, catalyzed by DNA methyltransferases (DNMTs), is associated with not only various cancers by silencing of tumor suppressor genes but also other diseases. The DNMTs, especially the DNMT1, DNMT3A and DNMT3B, are often overexpressed in various cancer tissues and cell lines. DNMTs are important epigenetic targets for drug development since the DNA methylation is reversible. This review summarizes an array of nucleoside and non-nucleoside inhibitors of DNMTs, as well as their biological activities. Among these inhibitors, the nucleoside analogue azacytidine and its deoxy derivative decitabine are both irreversible DNMT inhibitors and approved for the treatment of myelodysplastic syndrome.


2019 ◽  
Author(s):  
Xueqin Li ◽  
Yingying Zhang ◽  
Mengying Zhang ◽  
Xiang Kong ◽  
Hui Yang ◽  
...  

AbstractLong non-coding RNAs (lncRNAs) play key roles in various biological processes. However, the roles of lncRNAs in macrophage polarization remain largely unexplored. In this study, thousands of lncRNAs were identified that are differentially expressed in distinct polarized bone marrow-derived macrophages (BMDMs). Among them, Dnmt3aos (DNA methyltransferase 3A, opposite strand), as a known lncRNA, locates on the antisense strand of Dnmt3a. Functional experiments further confirmed that Dnmt3aos were highly expressed in M(IL-4) macrophages and participated in the regulation of Dnmt3a expression, and played a key role in macrophage polarization. The DNA methylation profiles between the Dnmt3aos knockdown group and the control group in M(IL-4) macrophages were determined by MeDIP-seq technique for the first time, and the Dnmt3aos-Dnmt3a axis-mediated DNA methylation modification-regulated macrophage polarization related gene IFN-γ was identified. Our study will help to enrich our knowledge of the mechanism of macrophage polarization and will provide new insights for immunotherapy in macrophage-associated diseases.


2019 ◽  
Author(s):  
Christine Dinh ◽  
Juan Young ◽  
Olena Bracho ◽  
Rahul Mittal ◽  
Denise Yan ◽  
...  

Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 245-LB
Author(s):  
MOHAMED M. ALI ◽  
CHANDRA HASSAN ◽  
MARIO MASRUR ◽  
FRANCESCO BIANCO ◽  
SHANE A. PHILLIPS ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document