scholarly journals Phylogenetic Analysis and Expression Patterns of the MAPK Gene Family in Wheat (Triticum aestivum L.)

2012 ◽  
Vol 11 (8) ◽  
pp. 1227-1235 ◽  
Author(s):  
Wei-wei LIAN ◽  
Yi-miao TANG ◽  
Shi-qing GAO ◽  
Zhao Zhang ◽  
Xin ZHAO ◽  
...  
2021 ◽  
Vol 23 (1) ◽  
pp. 469
Author(s):  
Kai Tong ◽  
Xinyang Wu ◽  
Long He ◽  
Shiyou Qiu ◽  
Shuang Liu ◽  
...  

Hyperosmolality and various other stimuli can trigger an increase in cytoplasmic-free calcium concentration ([Ca2+]cyt). Members of the Arabidopsis thaliana (L.) reduced hyperosmolality-gated calcium-permeable channels (OSCA) gene family are reported to be involved in sensing extracellular changes to trigger hyperosmolality-induced [Ca2+]cyt increases and controlling stomatal closure during immune signaling. Wheat (Triticum aestivum L.) is a very important food crop, but there are few studies of its OSCA gene family members. In this study, 42 OSCA members were identified in the wheat genome, and phylogenetic analysis can divide them into four clades. The members of each clade have similar gene structures, conserved motifs, and domains. TaOSCA genes were predicted to be regulated by cis-acting elements such as STRE, MBS, DRE1, ABRE, etc. Quantitative PCR results showed that they have different expression patterns in different tissues. The expression profiles of 15 selected TaOSCAs were examined after PEG (polyethylene glycol), NaCl, and ABA (abscisic acid) treatment. All 15 TaOSCA members responded to PEG treatment, while TaOSCA12/-39 responded simultaneously to PEG and ABA. This study informs research into the biological function and evolution of TaOSCA and lays the foundation for the breeding and genetic improvement of wheat.


Agronomy ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1189
Author(s):  
Zeeshan Ali Buttar ◽  
Yuan Yang ◽  
Rahat Sharif ◽  
Sheng Nan Wu ◽  
Yanzhou Xie ◽  
...  

The small YABBY plant-specific transcription factor has a prominent role in regulating plant growth and developmental activities. However, little information is available about YABBY gene family in Triticum aestivum L. Herein, we identified 21 TaYABBY genes in the Wheat genome database. Then, we performed the conserved motif and domain analysis of TaYABBY proteins. The phylogeny of the TaYABBY was further sub-divided into 6 subfamilies (YABBY1/YABBY3, YABB2, YABBY5, CRC and INO) based on the structural similarities and functional diversities. The GO (Gene ontology) analysis of TaYABBY proteins showed that they are involved in numerous developmental processes and showed response against environmental stresses. The analysis of all identified genes in RNA-seq data showed that they are expressed in different tissues of wheat. Differential expression patterns were observed in not only control samples but also in stressed samples such as biotic stress (i.e., Fusarium graminearum (F.g), septoria tritici (STB), Stripe rust (Sr) and Powdery mildew (Pm), and abiotic stress (i.e., drought, heat, combined drought and heat and phosphorus deficiency), especially at different grain development stages. All identified TaYABBY-genes were localized in the nucleus which implies their participation in the regulatory mechanisms of various biological and cellular processes. In light of the above-mentioned outcomes, it has been deduced that TaYABBY-genes in the wheat genome play an important role in mediating various development, growth, and resistance mechanism, which could provide significant clues for future functional studies.


2018 ◽  
Vol 41 (1) ◽  
pp. 79-94 ◽  
Author(s):  
Saurabh Gupta ◽  
Vinod Kumar Mishra ◽  
Sunita Kumari ◽  
Raavi ◽  
Ramesh Chand ◽  
...  

2019 ◽  
Vol 20 (13) ◽  
pp. 3295
Author(s):  
Imen HajSalah El Beji ◽  
Said Mouzeyar ◽  
Mohammed-Fouad Bouzidi ◽  
Jane Roche

The ubiquitin proteasome 26S system (UPS), involving monomeric and multimeric E3 ligases is one of the most important signaling pathways in many organisms, including plants. The SCF (SKP1/Cullin/F-box) multimeric complex is particularly involved in response to development and stress signaling. The SKP1 protein (S-phase kinase-associated protein 1) is the core subunit of this complex. In this work, we firstly identified 92 and 87 non-redundant Triticum aestivum SKP1-like (TaSKP) genes that were retrieved from the latest release of the wheat genome database (International Wheat Genome Sequencing Consortium (IWGSC) RefSeq v1.0) and the genome annotation of the TGAC v1 respectively. We then investigated the structure, phylogeny, duplication events and expression patterns of the SKP1-like gene family in various tissues and environmental conditions using a wheat expression platform containing public data. TaSKP1-like genes were expressed differentially in response to stress conditions, displaying large genomic variations or short insertions/deletions which suggests functional specialization within TaSKP1-like genes. Finally, interactions between selected wheat FBX (F-box) proteins and putative ancestral TaSKP1-like proteins were tested using the yeast two-hybrid (Y2H) system to examine the molecular interactions. These observations suggested that six Ta-SKP1 genes are likely to be ancestral genes, having similar functions as ASK1 and ASK2 in Arabidopsis, OSK1 and OSK20 in rice and PpSKP1 and PpSKP2 in Physcomitrella patens.


2019 ◽  
Vol 20 (8) ◽  
pp. 1914 ◽  
Author(s):  
Yifei Mou ◽  
Yuanyuan Liu ◽  
Shujun Tian ◽  
Qiping Guo ◽  
Chengshe Wang ◽  
...  

The 12-oxo-phytodienoic acid reductases (OPRs), which belong to the old yellow enzyme (OYE) family, are flavin mononucleotide (FMN)-dependent oxidoreductases with critical functions in plants. Despite the clear characteristics of growth and development, as well as the defense responses in Arabidopsis, tomato, rice, and maize, the potential roles of OPRs in wheat are not fully understood. Here, forty-eight putative OPR genes were found and classified into five subfamilies, with 6 in sub. I, 4 in sub. II, 33 in sub. III, 3 in sub. IV, and 2 in sub. V. Similar gene structures and conserved protein motifs of TaOPRs in wheat were identified in the same subfamilies. An analysis of cis-acting elements in promoters revealed that the functions of OPRs in wheat were mostly related to growth, development, hormones, biotic, and abiotic stresses. A total of 14 wheat OPR genes were identified as tandem duplicated genes, while 37 OPR genes were segmentally duplicated genes. The expression patterns of TaOPRs were tissue- and stress-specific, and the expression of TaOPRs could be regulated or induced by phytohormones and various stresses. Therefore, there were multiple wheat OPR genes, classified into five subfamilies, with functional diversification and specific expression patterns, and to our knowledge, this was the first study to systematically investigate the wheat OPR gene family. The findings not only provide a scientific foundation for the comprehensive understanding of the wheat OPR gene family, but could also be helpful for screening more candidate genes and breeding new varieties of wheat, with a high yield and stress resistance.


Sign in / Sign up

Export Citation Format

Share Document