scholarly journals Genome Wide Identification, Characterization, and Expression Analysis of YABBY-Gene Family in WHEAT (Triticum aestivum L.)

Agronomy ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1189
Author(s):  
Zeeshan Ali Buttar ◽  
Yuan Yang ◽  
Rahat Sharif ◽  
Sheng Nan Wu ◽  
Yanzhou Xie ◽  
...  

The small YABBY plant-specific transcription factor has a prominent role in regulating plant growth and developmental activities. However, little information is available about YABBY gene family in Triticum aestivum L. Herein, we identified 21 TaYABBY genes in the Wheat genome database. Then, we performed the conserved motif and domain analysis of TaYABBY proteins. The phylogeny of the TaYABBY was further sub-divided into 6 subfamilies (YABBY1/YABBY3, YABB2, YABBY5, CRC and INO) based on the structural similarities and functional diversities. The GO (Gene ontology) analysis of TaYABBY proteins showed that they are involved in numerous developmental processes and showed response against environmental stresses. The analysis of all identified genes in RNA-seq data showed that they are expressed in different tissues of wheat. Differential expression patterns were observed in not only control samples but also in stressed samples such as biotic stress (i.e., Fusarium graminearum (F.g), septoria tritici (STB), Stripe rust (Sr) and Powdery mildew (Pm), and abiotic stress (i.e., drought, heat, combined drought and heat and phosphorus deficiency), especially at different grain development stages. All identified TaYABBY-genes were localized in the nucleus which implies their participation in the regulatory mechanisms of various biological and cellular processes. In light of the above-mentioned outcomes, it has been deduced that TaYABBY-genes in the wheat genome play an important role in mediating various development, growth, and resistance mechanism, which could provide significant clues for future functional studies.

2019 ◽  
Vol 20 (13) ◽  
pp. 3295
Author(s):  
Imen HajSalah El Beji ◽  
Said Mouzeyar ◽  
Mohammed-Fouad Bouzidi ◽  
Jane Roche

The ubiquitin proteasome 26S system (UPS), involving monomeric and multimeric E3 ligases is one of the most important signaling pathways in many organisms, including plants. The SCF (SKP1/Cullin/F-box) multimeric complex is particularly involved in response to development and stress signaling. The SKP1 protein (S-phase kinase-associated protein 1) is the core subunit of this complex. In this work, we firstly identified 92 and 87 non-redundant Triticum aestivum SKP1-like (TaSKP) genes that were retrieved from the latest release of the wheat genome database (International Wheat Genome Sequencing Consortium (IWGSC) RefSeq v1.0) and the genome annotation of the TGAC v1 respectively. We then investigated the structure, phylogeny, duplication events and expression patterns of the SKP1-like gene family in various tissues and environmental conditions using a wheat expression platform containing public data. TaSKP1-like genes were expressed differentially in response to stress conditions, displaying large genomic variations or short insertions/deletions which suggests functional specialization within TaSKP1-like genes. Finally, interactions between selected wheat FBX (F-box) proteins and putative ancestral TaSKP1-like proteins were tested using the yeast two-hybrid (Y2H) system to examine the molecular interactions. These observations suggested that six Ta-SKP1 genes are likely to be ancestral genes, having similar functions as ASK1 and ASK2 in Arabidopsis, OSK1 and OSK20 in rice and PpSKP1 and PpSKP2 in Physcomitrella patens.


2021 ◽  
Vol 23 (1) ◽  
pp. 469
Author(s):  
Kai Tong ◽  
Xinyang Wu ◽  
Long He ◽  
Shiyou Qiu ◽  
Shuang Liu ◽  
...  

Hyperosmolality and various other stimuli can trigger an increase in cytoplasmic-free calcium concentration ([Ca2+]cyt). Members of the Arabidopsis thaliana (L.) reduced hyperosmolality-gated calcium-permeable channels (OSCA) gene family are reported to be involved in sensing extracellular changes to trigger hyperosmolality-induced [Ca2+]cyt increases and controlling stomatal closure during immune signaling. Wheat (Triticum aestivum L.) is a very important food crop, but there are few studies of its OSCA gene family members. In this study, 42 OSCA members were identified in the wheat genome, and phylogenetic analysis can divide them into four clades. The members of each clade have similar gene structures, conserved motifs, and domains. TaOSCA genes were predicted to be regulated by cis-acting elements such as STRE, MBS, DRE1, ABRE, etc. Quantitative PCR results showed that they have different expression patterns in different tissues. The expression profiles of 15 selected TaOSCAs were examined after PEG (polyethylene glycol), NaCl, and ABA (abscisic acid) treatment. All 15 TaOSCA members responded to PEG treatment, while TaOSCA12/-39 responded simultaneously to PEG and ABA. This study informs research into the biological function and evolution of TaOSCA and lays the foundation for the breeding and genetic improvement of wheat.


2020 ◽  
Author(s):  
Li Li ◽  
Fu Shi ◽  
Yanbin Guan ◽  
Guoli Wang ◽  
Yufan Zhang ◽  
...  

Abstract Background: The SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) genes encode a family of plant-specific transcription factors that contain a conservative SBP domain. SPL proteins play important roles in plant growth and development, such as plant architecture, flowering regulation, and grain yield. However, the systematic analysis of TaSPL gene family in wheat is lacking.Results: In this study, 56 TaSPL genes were identified from wheat genome and divided into eight groups (G1-G8), according to the phylogenetic analysis of TaSPL proteins among numbers of plant species. Bioinformatics method were applied to analyse the gene structure, motif, chromosome localization, segmental duplication and synteny of total TaSPL genes and the results showed that their characteristics were different among group in the exon-intron constitution, conserved and specific motif. The expansion and evolution of the TaSPL genes occurred within the wheat genome. Total 28 of 56 TaSPL genes were predicted to be putative targets for miR156, which revealed the importance of miR156-mediated regulation in wheat. Moreover, transcript level analysis of TaSPL genes in wheat tissues by qRT-PCR discovered the diversified spatiotemporal expression patterns, based on the comparison with reference RNA-seq data. Some TaSPL genes were subject to various stress treatments including drought and hormones, etc. suggesting that these part genes probably involved in responding to hormone signals during different wheat development stages. Conclusions: Our findings show that TaSPL genes may regulate the development of spike and grain, resistance to abiotic stresses, and involve in responding to hormone signals. These results could provide a fundamentally information to further study of the functions of TaSPL genes in wheat growth and development.


2012 ◽  
Vol 11 (8) ◽  
pp. 1227-1235 ◽  
Author(s):  
Wei-wei LIAN ◽  
Yi-miao TANG ◽  
Shi-qing GAO ◽  
Zhao Zhang ◽  
Xin ZHAO ◽  
...  

2020 ◽  
Author(s):  
Xiya Zuo ◽  
Shixiang Wang ◽  
Wen Xiang ◽  
Huiru Yang ◽  
Muhammad Mobeen Tahir ◽  
...  

Abstract Background: Apple (Malus domestica Borkh.) is one of the most popular cultivated fruit crops in China. Apple floral transition is an important process but liable to be affected by various environmental factors. The 14-3-3 proteins are involved in regulating diverse biological processes in plants, and some 14-3-3 members play vital roles in flowering. However, little information was available about the 14-3-3 members in apple.Results: In the current study, we identified eighteen 14-3-3 gene family members from the apple genome database, designated MdGF14a to MdGF14r. The isoforms possess a conserved core region comprising nine antiparallel α-helices and divergent N and C termini. According to their structural and phylogenetic features, Md14-3-3 proteins could be classified into two major evolutionary branches, the epsilon (ɛ) group and the non-epsilon (non-ɛ) group. Moreover, expression profiles derived from transcriptome data and quantitative real-time reverse transcription PCR analysis showed diverse expression patterns of Md14-3-3 genes in various tissues and in response to different sugars and hormone treatments during the floral transition phase. Four Md14‑3-3 isoforms (MdGF14a, MdGF14d, MdGF14i, and MdGF14j) exhibiting prominent transcriptional responses to sugars and hormones were selected for further investigation. Furthermore, yeast two-hybrid and bimolecular fluorescence complementation experiments showed that the four Md14-3-3 proteins interact with key floral integrators, MdTFL1 (TERMINAL FLOWER1) and MdFT (FLOWERING LOCUS T). Subcellular localization of four selected Md14-3-3 proteins demonstrated their localization in both the cytoplasm and nucleus.Conclusion: We identified the Md14-3-3s family in apple comprehensively. Certain Md14-3-3 genes are expressed predominantly during the apple floral transition stage, and may participate in the regulation of flowering through association with flower control genes. Our results provide a preliminary framework for further investigation into the roles of Md14-3-3s in floral transition.


2020 ◽  
Author(s):  
Xiya Zuo ◽  
Shixiang Wang ◽  
Wen Xiang ◽  
Huiru Yang ◽  
Muhammad Mobeen Tahir ◽  
...  

Abstract Background: Apple (Malus domestica Borkh.) is a popular cultivated fruit crop with high economic value in China. Apple floral transition is an important process but liable to be affected by various environmental factors. The 14-3-3 proteins are involved in regulating diverse biological processes in plants, and some 14-3-3 members play vital roles in flowering. However, little information was available about the 14-3-3 members in apple.Results: In the current study, we identified eighteen 14-3-3 gene family members from the apple genome database, designated MdGF14a to MdGF14r. The isoforms possess a conserved core region comprising nine antiparallel α-helices and divergent N and C termini. According to their structural and phylogenetic features, Md14-3-3 proteins could be classified into two major evolutionary branches, the epsilon (ɛ) group and the non-epsilon (non-ɛ) group. Moreover, expression profiles derived from transcriptome data and quantitative real-time reverse transcription PCR analysis showed diverse expression patterns of Md14-3-3 genes in various tissues and in response to different sugars and hormone treatments during the floral transition phase. Four Md14‑3-3 isoforms (MdGF14a, MdGF14d, MdGF14i, and MdGF14j) exhibiting prominent transcriptional responses to sugars and hormones were selected for further investigation. Furthermore, yeast two-hybrid and bimolecular fluorescence complementation experiments showed that the four Md14-3-3 proteins interact with key floral integrators, MdTFL1 (TERMINAL FLOWER1) and MdFT (FLOWERING LOCUS T). Subcellular localization of four selected Md14-3-3 proteins demonstrated their localization in both the cytoplasm and nucleus.Conclusion: We identified the Md14-3-3s family in apple comprehensively. Certain Md14-3-3 genes are expressed predominantly during the apple floral transition stage, and may participate in the regulation of flowering through association with flower control genes. Our results provide a preliminary framework for further investigation into the roles of Md14-3-3s in floral transition.


2018 ◽  
Vol 41 (1) ◽  
pp. 79-94 ◽  
Author(s):  
Saurabh Gupta ◽  
Vinod Kumar Mishra ◽  
Sunita Kumari ◽  
Raavi ◽  
Ramesh Chand ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document