On the role and challenges of CFD in the aerospace industry

2016 ◽  
Vol 120 (1223) ◽  
pp. 209-232 ◽  
Author(s):  
P. R. Spalart ◽  
V. Venkatakrishnan

ABSTRACTThis article examines the increasingly crucial role played by Computational Fluid Dynamics (CFD) in the analysis, design, certification, and support of aerospace products. The status of CFD is described, and we identify opportunities for CFD to have a more substantial impact. The challenges facing CFD are also discussed, primarily in terms of numerical solution, computing power, and physical modelling. We believe the community must find a balance between enthusiasm and rigor. Besides becoming faster and more affordable by exploiting higher computing power, CFD needs to become more reliable, more reproducible across users, and better understood and integrated with other disciplines and engineering processes. Uncertainty quantification is universally considered as a major goal, but will be slow to take hold. The prospects are good for steady problems with Reynolds-Averaged Navier-Stokes (RANS) turbulence modelling to be solved accurately and without user intervention within a decade – even for very complex geometries, provided technologies, such as solution adaptation are matured for large three-dimensional problems. On the other hand, current projections for supercomputers show a future rate of growth only half of the rate enjoyed from the 1990s to 2013; true exaflop performance is not close. This will delay pure Large-Eddy Simulation (LES) for aerospace applications with their high Reynolds numbers, but hybrid RANS-LES approaches have great potential. Our expectations for a breakthrough in turbulence, whether within traditional modelling or LES, are low and as a result off-design flow physics including separation will continue to pose a substantial challenge, as will laminar-turbulent transition. We also advocate for much improved user interfaces, providing instant access to rich numerical and physical information as well as warnings over solution quality, and thus naturally training the user.

2018 ◽  
Author(s):  
Jiajun Chen ◽  
Yue Sun ◽  
Hang Zhang ◽  
Dakui Feng ◽  
Zhiguo Zhang

Mixing in pipe junctions can play an important role in exciting force and distribution of flow in pipe network. This paper investigated the cross pipe junction and proposed an improved plan, Y-shaped pipe junction. The numerical study of a three-dimensional pipe junction was performed for calculation and improved understanding of flow feature in pipe. The filtered Navier–Stokes equations were used to perform the large-eddy simulation of the unsteady incompressible flow in pipe. From the analysis of these results, it clearly appears that the vortex strength and velocity non-uniformity of centerline, can be reduced by Y-shaped junction. The Y-shaped junction not only has better flow characteristic, but also reduces head loss and exciting force. The results of the three-dimensional improvement analysis of junction can be used in the design of pipe network for industry.


Inventions ◽  
2020 ◽  
Vol 5 (3) ◽  
pp. 33
Author(s):  
Horng-Wen Wu ◽  
Tang-Hong Chen ◽  
Nugroho-Putra Kelana ◽  
De-An Huang

This study analyzes transient turbulent modeling of three-dimensional multiple dimpled fin array using large eddy simulation (LES). The Navier–Stokes equations as well as the energy equation were constructed by the finite volume method and then discretized to form algebraic equations, which were solved by semi-implicit method for pressure-linked equation (SIMPLE). The solutions of temperature and velocity were obtained by iterating computation until it converged within each step. This simulation places nine fins on the bottom surface of a channel and changes the height of the dimple (0.4, 0.8, and 1.2 mm) with three different levels of Reynolds number (Re) (3500, 5000, and 6500) to investigate the temperature and flow field without gravity in forced convection. The results indicate that the dimpled fin array can generate vortices between the convex/concave dimples and the fin base and increase the influences of the height of the dimple on the flow field around the fin array. The averaged time-mean of the Nusselt number (Nu) for the dimple height of 0.8 mm is higher than that of the no-dimple case up to 14.4%, while the averaged time-mean Nu for the dimple height of 1.2 mm is lower than that of the no-dimple case up to 11.6%.


2017 ◽  
Vol 14 (03) ◽  
pp. 1750021 ◽  
Author(s):  
A. Niktash ◽  
B. P. Huynh

A windcatcher is a structure for providing natural ventilation using wind power; it is usually fitted on the roof of a building to exhaust the inside stale air to the outside and supplies the outside fresh air into the building interior space working by pressure difference between outside and inside of the building. In this paper, the behavior of free wind flow through a three-dimensional room fitted with a centered position two-canal bottom shape windcatcher model is investigated numerically, using a commercial computational fluid dynamics (CFD) software package and LES (Large Eddy Simulation) CFD method. The results have been compared with the obtained results for the same model but using RANS (Reynolds Averaged Navier–Stokes) CFD method. The model with its surrounded space has been considered in both method. It is found that the achieved results for the model from LES method are in good agreement with RANS method’s results for the same model.


Author(s):  
Hayder Schneider ◽  
Dominic von Terzi ◽  
Hans-Jo¨rg Bauer ◽  
Wolfgang Rodi

Reynolds-Averaged Navier-Stokes (RANS) calculations and Large-Eddy Simulations (LES) of the flow in two asymmetric three-dimensional diffusers were performed. The numerical setup was chosen to be in compliance with previous experiments. The aim of the present study is to find the least expensive method to compute reliably and accurately the impact of geometric sensitivity on the flow. RANS calculations fail to predict both the extent and location of the three-dimensional separation bubble. In contrast, LES is able to determine the amount of reverse flow and the pressure coefficient within the accuracy of experimental data.


Processes ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 1687
Author(s):  
Chao Yu ◽  
Xiangyao Xue ◽  
Kui Shi ◽  
Mingzhen Shao ◽  
Yang Liu

This paper compares the performances of three Computational Fluid Dynamics (CFD) turbulence models, Reynolds Average Navier-Stokes (RANS), Detached Eddy Simulation (DES), and Large Eddy Simulation (LES), for simulating the flow field of a wheel loader engine compartment. The distributions of pressure fields, velocity fields, and vortex structures in a hybrid-grided engine compartment model are analyzed. The result reveals that the LES and DES can capture the detachment and breakage of the trailing edge more abundantly and meticulously than RANS. Additionally, by comparing the relevant calculation time, the feasibility of the DES model is proved to simulate the three-dimensional unsteady flow of engine compartment efficiently and accurately. This paper aims to provide a guiding idea for simulating the transient flow field in the engine compartment, which could serve as a theoretical basis for optimizing and improving the layout of the components of the engine compartment.


1996 ◽  
Vol 118 (2) ◽  
pp. 285-291 ◽  
Author(s):  
Chuichi Arakawa ◽  
Yi Qian ◽  
Takashi Kubota

A three-dimensional Navier-Stokes code with pseudo-compressibility, an implicit formulation of finite difference, and a k – ε two-equation turbulence model has been developed for the Francis hydraulic runner. The viscous flow in the rotating field can be simulated well in the design flow operating condition as well as in the off-design conditions in which a strong vortex occurs due to the separation near the leading edge. Because the code employs an implicit algorithm and a wall function near the wall, it does not require a large CPU time. It can therefore be used on a small computer such as the desk-top workstation, and is available for use as a design tool. The same kind of algorithm that is used for compressible flows has been found to be appropriate for the simulation of complex incompressible flows in the field of turbomachinery.


2015 ◽  
Vol 138 (4) ◽  
Author(s):  
Gaelle Mouret ◽  
Nicolas Gourdain ◽  
Lionel Castillon

With the increase in computing power, large eddy simulation (LES) emerges as a promising technique to improve both knowledge of complex physics and reliability of turbomachinery flow predictions. However, these simulations are very expensive for industrial applications, especially when a 360  deg configuration should be considered. The objective of this paper is thus to adapt the well-known phase-lagged conditions to the LES approach by replacing the traditional Fourier series decomposition (FSD) with a compression method that does not make any assumptions on the spectrum of the flow. Several methods are reviewed, and the proper orthogonal decomposition (POD) is retained. This new method is first validated on a flow around a circular cylinder with rotating downstream blocks. The results show significant improvements with respect to the FSD. It is then applied to unsteady Reynolds-averaged Navier–Stokes (URANS) simulations of a single-stage compressor in 2.5D and 3D as a first validation step toward single-passage LES of turbomachinery configuration.


Author(s):  
Alexey Cheskidov ◽  
Darryl D. Holm ◽  
Eric Olson ◽  
Edriss S. Titi

In this paper we introduce and study a new model for three–dimensional turbulence, the Leray– α model. This model is inspired by the Lagrangian averaged Navier–Stokes– α model of turbulence (also known Navier–Stokes– α model or the viscous Camassa–Holm equations). As in the case of the Lagrangian averaged Navier–Stokes– α model, the Leray– α model compares successfully with empirical data from turbulent channel and pipe flows, for a wide range of Reynolds numbers. We establish here an upper bound for the dimension of the global attractor (the number of degrees of freedom) of the Leray– α model of the order of ( L / l d ) 12/7 , where L is the size of the domain and l d is the dissipation length–scale. This upper bound is much smaller than what one would expect for three–dimensional models, i.e. ( L / l d ) 3 . This remarkable result suggests that the Leray– α model has a great potential to become a good sub–grid–scale large–eddy simulation model of turbulence. We support this observation by studying, analytically and computationally, the energy spectrum and show that in addition to the usual k −5/3 Kolmogorov power law the inertial range has a steeper power–law spectrum for wavenumbers larger than 1/ α . Finally, we propose a Prandtl–like boundary–layer model, induced by the Leray– α model, and show a very good agreement of this model with empirical data for turbulent boundary layers.


Atmosphere ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1107
Author(s):  
Akshay A. Gowardhan ◽  
Dana L. McGuffin ◽  
Donald D. Lucas ◽  
Stephanie J. Neuscamman ◽  
Otto Alvarez ◽  
...  

Fast and accurate predictions of the flow and transport of materials in urban and complex terrain areas are challenging because of the heterogeneity of buildings and land features of different shapes and sizes connected by canyons and channels, which results in complex patterns of turbulence that can enhance material concentrations in certain regions. To address this challenge, we have developed an efficient three-dimensional computational fluid dynamics (CFD) code called Aeolus that is based on first principles for predicting transport and dispersion of materials in complex terrain and urban areas. The model can be run in a very efficient Reynolds average Navier–Stokes (RANS) mode or a detailed large eddy simulation (LES) mode. The RANS version of Aeolus was previously validated against field data for tracer gas and radiological dispersal releases. As a part of this work, we have validated the Aeolus model in LES mode against two different sets of data: (1) turbulence quantities measured in complex terrain at Askervein Hill; and (2) wind and tracer data from the Joint Urban 2003 field campaign for urban topography. As a third set-up, we have applied Aeolus to simulate cloud rise dynamics for buoyant plumes from high-temperature explosions. For all three cases, Aeolus LES predictions compare well to observations and other models. These results indicate that Aeolus LES can be used to accurately simulate turbulent flow and transport for a wide range of applications and scales.


2002 ◽  
Vol 124 (4) ◽  
pp. 876-885 ◽  
Author(s):  
M. Fan ◽  
Y. Wenren ◽  
W. Dietz ◽  
M. Xiao ◽  
J. Steinhoff

Over the last few years, a new flow computational methodology, vorticity confinement, has been shown to be very effective in treating concentrated vortical regions. These include thin vortex filaments which can be numerically convected over arbitrary distances on coarse Eulerian grids, while requiring only ∼2 grid cells across their cross section. They also include boundary layers on surfaces “immersed” in nonconforming uniform Cartesian grids, with no requirement for grid refinement or complex logic near the surface. In this paper we use vorticity confinement to treat flow over blunt bodies, including attached and separating boundary layers, and resulting turbulent wakes. In the wake it serves as a new, simple effective large-eddy simulation (LES). The same basic idea is applied to all of these features: At the smallest scales (∼2 cells) the vortical structures are captured and treated, effectively, as solitary waves that are solutions of nonlinear discrete equations on the grid. The method does not attempt to accurately discretize the Euler/Navier-Stokes partial differential equations (pde’s) for these small scales, but, rather, serves as an implicit, nonlinear model of the structures, directly on the grid. The method also allows the boundary layer to be effectively “captured.” In the turbulent wake, where there are many scales, small structures represent an effective small scale energy sink. However, they do not have the unphysical spreading due to numerical diffusion at these scales, which is present in conventional computational methods. The basic modeling idea is similar to that used in shock capturing, where intrinsically discrete equations are satisfied in thin, modeled regions. It is argued that, for realistic high Reynolds number flows, this direct, grid-based modeling approach is much more effective than first formulating model pde’s for the small scale, turbulent vortical regions and then discretizing them. Results are presented for three-dimensional flows over round and square cylinders and a realistic helicopter landing ship. Comparisons with experimental data are given. Finally, a new simpler formulation of vorticity confinement is given together with a related formulation for confinement of passive scalar fields.


Sign in / Sign up

Export Citation Format

Share Document