Remarks on complex fluid models

Author(s):  
P. Constantin
Keyword(s):  
2012 ◽  
Vol 10 (1) ◽  
pp. 33-73 ◽  
Author(s):  
Peter Constantin ◽  
Weiran Sun

2012 ◽  
Vol 252 (1) ◽  
pp. 624-640 ◽  
Author(s):  
A.V. Busuioc ◽  
D. Iftimie ◽  
M.C. Lopes Filho ◽  
H.J. Nussenzveig Lopes

Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3832
Author(s):  
Rubén Agregán ◽  
Noemí Echegaray ◽  
María López-Pedrouso ◽  
Radwan Kharabsheh ◽  
Daniel Franco ◽  
...  

Proteomics is a new area of study that in recent decades has provided great advances in the field of medicine. However, its enormous potential for the study of proteomes makes it also applicable to other areas of science. Milk is a highly heterogeneous and complex fluid, where there are numerous genetic variants and isoforms with post-translational modifications (PTMs). Due to the vast number of proteins and peptides existing in its matrix, proteomics is presented as a powerful tool for the characterization of milk samples and their products. The technology developed to date for the separation and characterization of the milk proteome, such as two-dimensional gel electrophoresis (2DE) technology and especially mass spectrometry (MS) have allowed an exhaustive characterization of the proteins and peptides present in milk and dairy products with enormous applications in the industry for the control of fundamental parameters, such as microbiological safety, the guarantee of authenticity, or the control of the transformations carried out, aimed to increase the quality of the final product.


Fluids ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 73
Author(s):  
Fang-Bao Tian ◽  
Li Wang

Due to rising human infertility, sperm motility has been an important subject. Among the hundreds of millions of sperms on the journey up the oviducts, only a few excellent travelers will reach the eggs. This journey is affected by many factors, some of which include sperm quality, sperm density, fluid rheology and chemotaxis. In addition, the sperm swimming through different body tracks and fluids involves complex sperm flagellar, complex fluid environment, and multi-sperm and sperm-wall interactions. Therefore, this topic has generated substantial research interest. In this paper, we present a review of computational studies on sperm swimming from an engineering perspective with focus on both simplified theoretical methods and fluid–structure interaction methods. Several open issues in this field are highlighted.


Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1388
Author(s):  
Jordi Miró ◽  
Jaime Catalán ◽  
Henar Marín ◽  
Iván Yánez-Ortiz ◽  
Marc Yeste

While artificial insemination (AI) with frozen-thawed sperm results in low fertility rates in donkeys, the addition of seminal plasma, removed during cryopreservation, partially counteracts that reduction. Related to this, an apparent inflammatory reaction in jennies is induced following AI with frozen-thawed sperm, as a high amount of polymorphonuclear neutrophils (PMN) are observed within the donkey uterus six hours after AI. While PMN appear to select the sperm that ultimately reach the oviduct, two mechanisms, phagocytosis and NETosis, have been purported to be involved in that clearance. Remarkably, sperm interacts with PMN, but the presence of seminal plasma reduces that binding. As seminal plasma is a complex fluid made up of different molecules, including proteins, this study aimed to evaluate how different seminal plasma fractions, separated by molecular weight (<3, 3–10, 10–30, 30–50, 50–100, and >100 kDa), affect sperm–PMN binding. Sperm motility, viability, and sperm–PMN binding were evaluated after 0 h, 1 h, 2 h, 3 h, and 4 h of co-incubation at 38 °C. Two seminal plasma fractions, including 30–50 kDa or 50–100 kDa proteins, showed the highest sperm motility and viability. As viability of sperm not bound to PMN after 3 h of incubation was the highest in the presence of 30–50 and 50–100 kDa proteins, we suggest that both fractions are involved in the control of the jenny’s post-breeding inflammatory response. In conclusion, this study has shown for the first time that specific fractions rather than the entire seminal plasma modulate sperm–PMN binding within the donkey uterus. As several proteins suggested to be involved in the control of post-AI endometritis have a molecular weight between 30 and 100 kDa, further studies aimed at determining the identity of these molecules and evaluating their potential effect in vivo are much warranted.


2021 ◽  
Vol 503 (4) ◽  
pp. 5091-5099
Author(s):  
Dragan Slavkov Hajdukovic ◽  
Sergej Walter

ABSTRACT In a recent paper, quantum vacuum was considered as a source of gravity, and the simplest, phenomenon, the gravitational polarization of the quantum vacuum by an immersed point-like body, was studied. In this paper, we have derived the effective gravitational charge density of the quantum vacuum, caused by two immersed point-like bodies. Among others, the obtained result proves that quantum vacuum can have regions with a negative effective gravitational charge density. Hence, quantum vacuum, the ‘ocean’ in which all matter of the Universe is immersed, acts as a complex fluid with a very variable gravitational charge density that might include both positive and negative densities; a crucial prediction that can be tested within the Solar system. In the general case of ${N \ge {\rm{3}}}$ point-like bodies, immersed in the quantum vacuum, the analytical solutions are not possible, and the use of numerical methods is inevitable. The key point is that an appropriate numerical method, for the calculation of the effective gravitational charge density of the quantum vacuum induced by N immersed bodies, might be crucial in description of galaxies, without the involvement of dark matter or a modification of gravity. The development of such a valuable numerical method, is not possible, without a previous (and in this study achieved) understanding of the impact of a two-body system.


Sign in / Sign up

Export Citation Format

Share Document