scholarly journals P.135 Autism-associated mutations in SHANK2 increase synaptic connectivity and dendrite complexity in human neurons

Author(s):  
K Zaslavsky ◽  
W Zhang ◽  
E Deneault ◽  
M Zhao ◽  
DC Rodrigues ◽  
...  

Background: Heterozygous loss-of-function mutations in the synaptic scaffolding gene SHANK2 are strongly associated with autism spectrum disorder (ASD). However, their impact on the function of human neurons is unknown. Derivation of induced pluripotent stem cells (iPSC) from affected individuals permits generation of live neurons to answer this question. Methods: We generated iPSCs by reprogramming dermal fibroblasts of neurotypic and ASD-affected donors. To isolate the effect of SHANK2, we used CRISPR/Cas9 to knock out SHANK2 in control iPSCs and correct a heterozygous nonsense mutation in ASD-affected donor iPSCs. We then derived cortical neurons from SOX1+ neural precursor cells differentiated from these iPSCs. Using a novel assay that overcomes line-to-line variability, we compared neuronal morphology, total synapse number, and electrophysiological properties between SHANK2 mutants and controls. Results: Relative to controls, SHANK2 mutant neurons have increased dendrite complexity, dendrite length, total synapse number (1.5-2-fold), and spontaneous excitatory postsynaptic current (sEPSC) frequency (3-7.6-fold). Conclusions: ASD-associated heterozygous loss-of-function mutations in SHANK2 increase synaptic connectivity among human neurons by increasing synapse number and sEPSC frequency. This is partially supported by increased dendrite length and complexity, providing evidence that SHANK2 functions as a suppressor of dendrite branching during neurodevelopment.

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Sahar Avazzadeh ◽  
Leo R. Quinlan ◽  
Jamie Reilly ◽  
Katya McDonagh ◽  
Amirhossein Jalali ◽  
...  

Abstract Background NRXN1 deletions are identified as one of major rare risk factors for autism spectrum disorder (ASD) and other neurodevelopmental disorders. ASD has 30% co-morbidity with epilepsy, and the latter is associated with excessive neuronal firing. NRXN1 encodes hundreds of presynaptic neuro-adhesion proteins categorized as NRXN1α/β/γ. Previous studies on cultured cells show that the short NRXN1β primarily exerts excitation effect, whereas the long NRXN1α which is more commonly deleted in patients involves in both excitation and inhibition. However, patient-derived models are essential for understanding functional consequences of NRXN1α deletions in human neurons. We recently derived induced pluripotent stem cells (iPSCs) from five controls and three ASD patients carrying NRXN1α+/- and showed increased calcium transients in patient neurons. Methods In this study we investigated the electrophysiological properties of iPSC-derived cortical neurons in control and ASD patients carrying NRXN1α+/- using patch clamping. Whole genome RNA sequencing was carried out to further understand the potential underlying molecular mechanism. Results NRXN1α+/- cortical neurons were shown to display larger sodium currents, higher AP amplitude and accelerated depolarization time. RNASeq analyses revealed transcriptomic changes with significant upregulation glutamatergic synapse and ion channels/transporter activity including voltage-gated potassium channels (GRIN1, GRIN3B, SLC17A6, CACNG3, CACNA1A, SHANK1), which are likely to couple with the increased excitability in NRXN1α+/- cortical neurons. Conclusions Together with recent evidence of increased calcium transients, our results showed that human NRXN1α+/- isoform deletions altered neuronal excitability and non-synaptic function, and NRXN1α+/- patient iPSCs may be used as an ASD model for therapeutic development with calcium transients and excitability as readouts.


2021 ◽  
Author(s):  
Bahareh Haddad Derafshi ◽  
Tamas Danko ◽  
Soham Chanda ◽  
Pedro Batista ◽  
Ulrike Litzenburger ◽  
...  

Abstract The chromodomain helicase DNA-binding protein CHD8 is among the most frequently found de-novo mutations in autism spectrum disorder (ASD)1-4. Despite its prominent disease involvement, little is known about its molecular function in the human brain. CHD8 is believed to be a chromatin regulator, but mechanisms for its genomic targeting is also unclear. To elucidate the role of CHD8 in human neurons, we generated conditional loss-of-function alleles in pluripotent stem cells. Chromatin accessibility and transcriptional profiling showed that CHD8 is a potent chromatin opener and transcriptional activator of its direct neuronal targets, including a distinct group of ASD genes. We found the chromatin targeting of CHD8 to be highly context dependent. In human neurons, CHD8 was preferentially bound at promoter sequences which were significantly enriched in ETS motifs. Indeed, the chromatin state of ETS motif-containing promoters was preferentially affected upon loss of CHD8. Among the many ETS transcription factors, we found ELK1 to be the best correlated with CHD8 expression in primary human fetal and adult cortical neurons and most highly expressed in our ES cell-derived neurons. Remarkably, ELK1 was necessary to recruit CHD8 specifically to ETS motif-containing sites. These findings imply the functional cooperativity between ELK1, a key downstream factor of the MAPK/ERK pathway, and CHD8 on chromatin involvement in human neurons. THEREFORE, the MAPK/ERK/ELK1 axis may also play a role in the pathogenesis caused by CHD8 mutations5 .


2020 ◽  
Author(s):  
Xiaonan Liu ◽  
Sara M. Blazejewski ◽  
Sarah A. Bennison ◽  
Kazuhito Toyo-oka

AbstractGSTP proteins are metabolic enzymes involved in removal of oxidative stress and intracellular signaling and also have inhibitory effects on JNK activity. However, the functions of Gstp proteins in the developing brain are unknown. In mice, there are three Gstp proteins, Gstp1, 2 and 3, while there is only one GSTP in humans. By RT-PCR analysis, we found that Gstp1 was expressed beginning at E15.5 in the cortex, but Gstp2 and 3 started expressing at E18.5. Gstp 1 and 2 knockdown caused decreased neurite number in cortical neurons, implicating them in neurite initiation. Using in utero electroporation to knockdown Gstp1 and 2 in layer 2/3 pyramidal neurons in vivo, we found abnormal swelling of the apical dendrite at P3 and reduced neurite number at P15. Using time-lapse live imaging, we found that the apical dendrite orientation was skewed compared to the control, but these defects were ameliorated. Overexpression of Gstp 1 or 2 resulted in changes in neurite length, suggesting a role in neurite elongation. We explored the molecular mechanism and found that JNK inhibition rescued reduced neurite number caused by Gstp knockdown, indicating that Gstp regulates neurite formation through JNK signaling. Thus, we found novel functions of Gstp proteins in neurite initiation during cortical development. Furthermore, the overexpression experiments suggest different functions of Gstp1 and 2 in neurite elongation. Since previous studies have shown the potential implication of Gstp in Autism Spectrum Disorder, our findings will attract more clinical interests in Gstp proteins in neurodevelopmental disorders.SignificanceNeurite formation, including neurite initiation and elongation, is the first step of generating polarized neuronal morphology in developing neurons, and thus is essential for establishing a neuronal network. Therefore, it is crucial to understand the mechanisms of neurite formation. Limited studies have been performed to clarify the mechanisms of neurite formation, especially neurite initiation. In this present study, we report a novel, essential role of Gstp in neurite initiation in mouse cortical neurons in vitro and in vivo. We also found that Gstp regulates neurite formation via JNK signaling pathways. These findings not only provide novel functions of Gstp proteins in neuritogenesis during cortical development but also help us to understand the complexity of neurite formation.


2018 ◽  
Author(s):  
Carole Shum ◽  
Lucia Dutan ◽  
Emily Annuario ◽  
Katherine Warre-Cornish ◽  
Samuel E. Taylor ◽  
...  

AbstractEndocannabinoids regulate different aspects of neurodevelopment. In utero exposure to the exogenous psychoactive cannabinoid Δ9-tetrahydrocannabinol (Δ9-THC), has been linked with abnormal cortical development in animal models. However, much less is known about the actions of endocannabinoids in human neurons. Here we investigated the effect of the endogenous endocannabinoid 2-arachidonoyl glycerol (2AG) and Δ9-THC on the development of neuronal morphology and activation of signaling kinases, in cortical glutamatergic neurons derived from human induced pluripotent stem cells (hiPSCs). Our data indicate that the cannabinoid type 1 receptor (CB1R), but not the cannabinoid 2 receptor (CB2R), GPR55 or TRPV1 receptors, is expressed in young, immature hiPSC-derived cortical neurons. Consistent with previous reports, 2AG and Δ9-THC negatively regulated neurite outgrowth. Interestingly, acute exposure to both 2AG and Δ9-THC inhibited phosphorylation of serine/threonine kinase extracellular signal-regulated protein kinases (ERK1/2), whereas Δ9-THC also reduced phosphorylation of Akt (aka PKB). Moreover, the CB1R inverse agonist SR 141716A attenuated the negative regulation of neurite outgrowth and ERK1/2 phosphorylation induced by 2AG and Δ9-THC. Taken together, our data suggest that hiPSC-derived cortical neurons express CB1Rs and are responsive to both endogenous and exogenous cannabinoids. Thus, hiPSC-neurons may represent a good cellular model for investigating the role of the endocannabinoid system in regulating cellular processes in human neurons.


2020 ◽  
Author(s):  
Seon Hye Cheon ◽  
Allison M. Culver ◽  
Anna M. Bagnell ◽  
Foster D. Ritchie ◽  
Janay M. Clytus ◽  
...  

SUMMARYAutism spectrum disorders (ASD) are associated with defects in neuronal connectivity and are highly heritable. Genetic findings suggest that there is an overrepresentation of chromatin regulatory genes among the genes associated with ASD. ASH1 like histone lysine methyltransferase (ASH1L) was identified as a major risk factor for autism. ASH1L methylates Histone H3 on Lysine 36, which is proposed to result primarily in transcriptional activation. However, how mutations in ASH1L lead to deficits in neuronal connectivity associated with autism pathogenesis is not known. We report that ASH1L regulates neuronal morphogenesis by counteracting the catalytic activity of Polycomb Repressive complex 2 group (PRC2) in stem cell-derived human neurons. Depletion of ASH1L decreases neurite outgrowth and decreases expression of the gene encoding the neurotrophin receptor TrkB whose signaling pathway is linked to neuronal morphogenesis. This is overcome by inhibition of PRC2 activity, indicating a balance between the Trithorax group protein ASH1L and PRC2 activity determines neuronal morphology and connectivity. Thus, ASH1L epigenetically regulates neuronal connectivity by modulating the BDNF-TrkB signaling pathway, which likely contributes to the neurodevelopmental pathogenesis associated with ASD in patients with ASH1L mutations.eTOC BLURBCheon et al. report a novel epigenetic mechanism that implicates the counteracting activities of the evolutionarily conserved Trithorax (ASH1L) and Polycomb (PRC2) chromatin regulators, in the modulation of human neuronal connectivity by regulating the developmentally important TrkB-BDNF signaling pathway.HIGHLIGHTSASH1L regulates neuronal morphogenesis by modulating neurotrophin signalingCounteracting activities of Trithorax (ASH1L) and Polycomb (PRC2) affect neuronal arborizationLoss of ASH1L modulates growth cone size in human neurons


2019 ◽  
Author(s):  
Monica Frega ◽  
Katrin Linda ◽  
Jason M. Keller ◽  
Güvem Gümüş-Akay ◽  
Britt Mossink ◽  
...  

AbstractEpigenetic regulation of gene transcription plays a critical role in neural network development and in the etiology of Intellectual Disability (ID) and Autism Spectrum Disorder (ASD). However, little is known about the mechanisms by which epigenetic dysregulation leads to neural network defects. Kleefstra syndrome (KS), caused by mutation in the histone methyltransferase EHMT1, is a neurodevelopmental disorder with the clinical features of both ID and ASD. To study the impact of decreased EHMT1 function in human cells, we generated excitatory cortical neurons from induced pluripotent stem (iPS) cells derived from KS patients. In addition, we created an isogenic set by genetically editing healthy iPS cells. Characterization of the neurons at the single-cell and neuronal network level revealed consistent discriminative properties that distinguished EHMT1-mutant from wildtype neurons. Mutant neuronal networks exhibited network bursting with a reduced rate, longer duration, and increased temporal irregularity compared to control networks. We show that these changes were mediated by the upregulation of the NMDA receptor (NMDAR) subunit 1 and correlate with reduced deposition of the repressive H3K9me2 mark, the catalytic product of EHMT1, at the GRIN1 promoter. Furthermore, we show that EHMT1 deficiency in mice leads to similar neuronal network impairments and increased NMDAR function. Finally, we could rescue the KS patient-derived neuronal network phenotypes by pharmacological inhibition of NMDARs. Together, our results demonstrate a direct link between EHMT1 deficiency in human neurons and NMDAR hyperfunction, providing the basis for a more targeted therapeutic approach to treating KS.


2018 ◽  
Author(s):  
Maria T. Lazaro ◽  
Jiannis Taxidis ◽  
Tristan Shuman ◽  
Iris Bachmutsky ◽  
Taruna Ikrar ◽  
...  

ABSTRACTLoss of function mutations in CNTNAP2 cause a syndromic form of autism spectrum disorder (ASD) in humans and produce social deficits, repetitive behaviors, and seizures in mice. Yet, the functional effects of these mutations at the cellular and circuit level remain elusive. Using laser scanning photostimulation, whole-cell recordings, and electron microscopy, we found a dramatic decrease in functional excitatory and inhibitory synaptic inputs in L2/3 medial prefrontal cortex (mPFC) of Cntnap2 knock-out (KO) mice. In accordance with decreased synaptic input, KO mice displayed reduced spine and synapse densities, despite normal intrinsic excitability and dendritic complexity. To determine how this decrease in synaptic inputs alters coordination of neuronal firing patterns in vivo, we recorded mPFC local field potentials (LFP) and unit spiking in head-fixed mice during locomotion and rest. In KO mice, LFP power was not significantly altered at all tested frequencies, but inhibitory neurons showed delayed phase-firing and reduced phase-locking to delta and theta oscillations during locomotion. Excitatory neurons showed similar changes but only to delta oscillations. These findings suggest that profound ASD-related alterations in synaptic inputs can yield perturbed temporal coordination of cortical ensembles.


2021 ◽  
Vol 14 ◽  
Author(s):  
Akiko Tabuchi ◽  
Daisuke Ihara

Accumulating evidence suggests that the serum response factor (SRF) cofactor megakaryoblastic leukemia (MKL)/myocardin-related transcription factor (MRTF) has critical roles in many physiological and pathological processes in various cell types. MKL/MRTF molecules comprise MKL1/MRTFA and MKL2/MRTFB, which possess actin-binding motifs at the N-terminus, and SRF-binding domains and a transcriptional activation domain (TAD) at the C-terminus. Several studies have reported that, in association with actin rearrangement, MKL/MRTF translocates from the cytoplasm to the nucleus, where it regulates SRF-mediated gene expression and controls cell motility. Therefore, it is important to elucidate the roles of MKL/MRTF in the nervous system with regard to its structural and functional regulation by extracellular stimuli. We demonstrated that MKL/MRTF is highly expressed in the brain, especially the synapses, and is involved in dendritic complexity and dendritic spine maturation. In addition to the positive regulation of dendritic complexity, we identified several MKL/MRTF isoforms that negatively regulate dendritic complexity in cortical neurons. We found that the MKL/MRTF isoforms were expressed differentially during brain development and the impacts of these isoforms on the immediate early genes including Arc/Arg3.1, were different. Here, we review the roles of MKL/MRTF in the nervous system, with a special focus on the MKL/MRTF-mediated fine-tuning of neuronal morphology and gene transcription. In the concluding remarks, we briefly discuss the future perspectives and the possible involvement of MKL/MRTF in neurological disorders such as schizophrenia and autism spectrum disorder.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Isabelle Léna ◽  
Massimo Mantegazza

Abstract Mutations of the SCN2A gene, encoding the voltage gated sodium channel NaV1.2, have been associated to a wide spectrum of epileptic disorders ranging from benign familial neonatal-infantile seizures to early onset epileptic encephalopathies such as Ohtahara syndrome. These phenotypes may be caused by either gain-of-function or loss-of-function mutations. More recently, loss-of-function SCN2A mutations have also been identified in patients with autism spectrum disorder (ASD) without overt epileptic phenotypes. Heterozygous Scn2a knock-out mice (Scn2a+/−) may be a model of this phenotype. Because ASD develops in childhood, we performed a detailed behavioral characterization of Scn2a+/− mice comparing the juvenile/adolescent period of development and adulthood. We used tasks relevant to ASD and the different comorbidities frequently found in this disorder, such as anxiety or intellectual disability. Our data demonstrate that young Scn2a+/− mice display autistic-like phenotype associated to impaired memory and reduced reactivity to stressful stimuli. Interestingly, these dysfunctions are attenuated with age since adult mice show only communicative deficits. Considering the clinical data available on patients with loss-of-function SCN2A mutations, our results indicate that Scn2a+/− mice constitute an ASD model with construct and face validity during the juvenile/adolescent period of development. However, more information about the clinical features of adult carriers of SCN2A mutations is needed to evaluate comparatively the phenotype of adult Scn2a+/− mice.


2022 ◽  
Vol 14 ◽  
Author(s):  
Despina Tsortouktzidis ◽  
Anna R. Tröscher ◽  
Herbert Schulz ◽  
Thoralf Opitz ◽  
Susanne Schoch ◽  
...  

Precise genome editing in combination with viral delivery systems provides a valuable tool for neuroscience research. Traditionally, the role of genes in neuronal circuits has been addressed by overexpression or knock-out/knock-down systems. However, those techniques do not manipulate the endogenous loci and therefore have limitations. Those constraints include that many genes exhibit extensive alternative splicing, which can be regulated by neuronal activity. This complexity cannot be easily reproduced by overexpression of one protein variant. The CRISPR activation and interference/inhibition systems (CRISPRa/i) directed to promoter sequences can modulate the expression of selected target genes in a highly specific manner. This strategy could be particularly useful for the overexpression of large proteins and for alternatively spliced genes, e.g., for studying large ion channels known to be affected in ion channelopathies in a variety of neurological diseases. Here, we demonstrate the feasibility of a newly developed CRISPRa/i toolbox to manipulate the promoter activity of the Cacna1h gene. Impaired, function of the low-voltage-activated T-Type calcium channel CaV3.2 is involved in genetic/mutational as well as acquired/transcriptional channelopathies that emerge with epileptic seizures. We show CRISPR-induced activation and inhibition of the Cacna1h locus in NS20Y cells and primary cortical neurons, as well as activation in mouse organotypic slice cultures. In future applications, the system offers the intriguing perspective to study functional effects of gain-of-function or loss-of-function variations in the Cacna1h gene in more detail. A better understanding of CaV3.2 channelopathies might result in a major advancement in the pharmacotherapy of CaV3.2 channelopathy diseases.


Sign in / Sign up

Export Citation Format

Share Document