scholarly journals Taiwan’s Successful COVID-19 Mitigation and Containment Strategy: Achieving Quasi Population Immunity

Author(s):  
Li-Chien Chien ◽  
Christian K. Beÿ ◽  
Kristi L. Koenig

ABSTRACT The authors describe Taiwan’s successful strategy in achieving control of coronavirus disease (COVID-19) without economic shutdown, despite the prediction that millions of infections would be imported from travelers returning from Chinese New Year celebrations in Mainland China in early 2020. As of September 2, 2020, Taiwan reports 489 cases, 7 deaths, and no locally acquired COVID-19 cases for the last 135 days (greater than 4 months) in its population of over 23.8 million people. Taiwan created quasi population immunity through the application of established public health principles. These non-pharmaceutical interventions, including public masking and social distancing, coupled with early and aggressive identification, isolation, and contact tracing to inhibit local transmission, represent a model for optimal public health management of COVID-19 and future emerging infectious diseases.

2020 ◽  
Author(s):  
Kenichi W. Okamoto ◽  
Virakbott Ong ◽  
Robert G. Wallace ◽  
Rodrick Wallace ◽  
Luis Fernando Chaves

For most emerging infectious diseases, including SARS-Coronavirus-2 (SARS-CoV-2), pharmaceutical intervensions such as drugs and vaccines are not available, and disease surveillance followed by isolating, contact-tracing and quarantining infectious individuals is critical for controlling outbreaks. These interventions often begin by identifying symptomatic individuals. However, by actively removing pathogen strains likely to be symptomatic, such interventions may inadvertently select for strains less likely to result in symptomatic infections. Additionally, the pathogen's fitness landscape is structured around a heterogeneous host pool. In particular, uneven surveillance efforts and distinct transmission risks across host classes can drastically alter selection pressures. Here we explore this interplay between evolution caused by disease control efforts, on the one hand, and host heterogeneity in the efficacy of public health interventions on the other, on the potential for a less symptomatic, but widespread, pathogen to evolve. We use an evolutionary epidemiology model parameterized for SARS-CoV-2, as the widespread potential for silent transmission by asymptomatic hosts has been hypothesized to account, in part, for its rapid global spread. We show that relying on symptoms-driven reporting for disease control ultimately shifts the pathogen's fitness landscape and can cause pandemics. We find such outcomes result when isolation and quarantine efforts are intense, but insufficient for suppression. We further show that when host removal depends on the prevalence of symptomatic infections, intense isolation efforts can select for the emergence and extensive spread of more asymptomatic strains. The severity of selection pressure on pathogens caused by these interventions likely lies somewhere between the extremes of no intervention and thoroughly successful eradication. Identifying the levels of public health responses that facilitate selection for asymptomatic pathogen strains is therefore critical for calibrating disease suppression and surveillance efforts and for sustainably managing emerging infectious diseases.


Author(s):  
Nicholas Evans ◽  
Thomas Inglesby

This chapter introduces ethical issues that arise in the context of biosecurity: policies and actions intended to prevent the development or emergence, or mitigate the consequences, of serious biological threats. These threats could include deliberate biological weapon attacks (bioterrorism), pandemics, emerging infectious diseases, or major laboratory accidents. The basic values that underpin these public health concerns are first introduced. Ethical issues that arise before, during, and following a biosecurity crisis are then examined, including issues of resource allocation, dual-use research, and the possibility of quarantine. Their resolution requires trade-offs among different ethical values, including utility, fairness, and liberty.


Eye ◽  
2021 ◽  
Author(s):  
Ashwin Venkatesh ◽  
Ravi Patel ◽  
Simran Goyal ◽  
Timothy Rajaratnam ◽  
Anant Sharma ◽  
...  

AbstractEmerging infectious diseases (EIDs) are an increasing threat to public health on a global scale. In recent times, the most prominent outbreaks have constituted RNA viruses, spreading via droplets (COVID-19 and Influenza A H1N1), directly between humans (Ebola and Marburg), via arthropod vectors (Dengue, Zika, West Nile, Chikungunya, Crimean Congo) and zoonotically (Lassa fever, Nipah, Rift Valley fever, Hantaviruses). However, specific approved antiviral therapies and vaccine availability are scarce, and public health measures remain critical. Patients can present with a spectrum of ocular manifestations. Emerging infectious diseases should therefore be considered in the differential diagnosis of ocular inflammatory conditions in patients inhabiting or returning from endemic territories, and more general vigilance is advisable in the context of a global pandemic. Eye specialists are in a position to facilitate swift diagnosis, improve clinical outcomes, and contribute to wider public health efforts during outbreaks. This article reviews those emerging viral diseases associated with reports of ocular manifestations and summarizes details pertinent to practicing eye specialists.


2021 ◽  
Vol 12 (02) ◽  
pp. 229-236
Author(s):  
Clair Sullivan ◽  
Ides Wong ◽  
Emily Adams ◽  
Magid Fahim ◽  
Jon Fraser ◽  
...  

Abstract Background Queensland, Australia has been successful in containing the COVID-19 pandemic. Underpinning that response has been a highly effective virus containment strategy which relies on identification, isolation, and contact tracing of cases. The dramatic emergence of the COVID-19 pandemic rendered traditional paper-based systems for managing contact tracing no longer fit for purpose. A rapid digital transformation of the public health contact tracing system occurred to support this effort. Objectives The objectives of the digital transformation were to shift legacy systems (paper or standalone electronic systems) to a digitally enabled public health system, where data are centered around the consumer rather than isolated databases. The objective of this paper is to outline this case study and detail the lessons learnt to inform and give confidence to others contemplating digitization of public health systems in response to the COVID-19 pandemic. Methods This case study is set in Queensland, Australia. Universal health care is available. A multidisciplinary team was established consisting of clinical informaticians, developers, data strategists, and health information managers. An agile “pair-programming” approach was undertaken to application development and extensive change efforts were made to maximize adoption of the new digital workflows. Data governance and flows were changed to support rapid management of the pandemic. Results The digital coronavirus application (DCOVA) is a web-based application that securely captures information about people required to quarantine and creates a multiagency secure database to support a successful containment strategy. Conclusion Most of the literature surrounding digital transformation allows time for significant consultation, which was simply not possible under crisis conditions. Our observation is that staff was willing to adopt new digital systems because the reason for change (the COVID-19 pandemic) was clearly pressing. This case study highlights just how critical a unified purpose, is to successful, rapid digital transformation.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Chunxiang Cao ◽  
Wei Chen ◽  
Sheng Zheng ◽  
Jian Zhao ◽  
Jinfeng Wang ◽  
...  

Severe acute respiratory syndrome (SARS) is one of the most severe emerging infectious diseases of the 21st century so far. SARS caused a pandemic that spread throughout mainland China for 7 months, infecting 5318 persons in 194 administrative regions. Using detailed mainland China epidemiological data, we study spatiotemporal aspects of this person-to-person contagious disease and simulate its spatiotemporal transmission dynamics via the Bayesian Maximum Entropy (BME) method. The BME reveals that SARS outbreaks show autocorrelation within certain spatial and temporal distances. We use BME to fit a theoretical covariance model that has a sine hole spatial component and exponential temporal component and obtain the weights of geographical and temporal autocorrelation factors. Using the covariance model, SARS dynamics were estimated and simulated under the most probable conditions. Our study suggests that SARS transmission varies in its epidemiological characteristics and SARS outbreak distributions exhibit palpable clusters on both spatial and temporal scales. In addition, the BME modelling demonstrates that SARS transmission features are affected by spatial heterogeneity, so we analyze potential causes. This may benefit epidemiological control of pandemic infectious diseases.


2005 ◽  
Vol 04 (03) ◽  
pp. C03
Author(s):  
Indira Nath

The world is facing an unprecedented situation in health management as fast transport and travel lead to spread of diseases at a rate that has not been seen before and into countries that had once conquered them. This is even more evident with infectious diseases which do not respect geopolitical barriers or economic progress. It is becoming increasingly clear that control of such diseases and good practices for public health need global sharing of knowledge and international cooperation. In addition networking of institutions involved in health care with the communities that they serve is fundamental to containing diseases and promoting good health. For reasons as yet unclear even non infectious diseases such as obesity, hypertension and diabetes are also increasing at an alarming rate globally. The advantages of international networking and timely communication which contained three diseases will be discussed in this article.


Author(s):  
Dillon Adam ◽  
Peng Wu ◽  
Jessica Wong ◽  
Eric Lau ◽  
Tim Tsang ◽  
...  

Abstract Superspreading events have characterised previous epidemics of severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) infections. Using contact tracing data, we identified and characterized SARS-CoV-2 clusters in Hong Kong. Given a superspreading threshold of 6-8 secondary cases, we identified 5-7 probable superspreading events and evidence of substantial overdispersion in transmissibility, and estimated that 20% of cases were responsible for 80% of local transmission. Among terminal cluster cases, 27% (45/167) ended in quarantine. Social exposures produced a greater number of secondary cases compared to family or work exposures (p<0.001) while delays between symptom onset and isolation did not reliably predict the number of individual secondary cases or resulting cluster sizes. Public health authorities should focus on rapid tracing and quarantine of contacts, along with physical distancing to prevent superspreading events in high-risk social environments.


Sign in / Sign up

Export Citation Format

Share Document