The effects of treatment and management history on the control of Old World Climbing Fern (Lygodium microphyllum), Brazilian Pepper (Schinus terebinthifolia) and Punktree (Melaleuca quinquenervia)

2020 ◽  
pp. 1-28
Author(s):  
Samantha L. Dietz ◽  
Chad T. Anderson ◽  
Dexter R. Sowell ◽  
Robert L. Gundy ◽  
Linda E. King

Abstract To successfully reduce overall invasive plant cover over time, an effective treatment plan must be established such that mortality exceeds new colonization and re-spouting growth rates. However, few evaluations of the effects of long-term, consistent treatment at different intervals exist. We report the effects of treatment intensity on Old World climbing fern (Lygodium microphyllum (Cav.) R. Br.), Brazilian pepper (Schinus terebinthifolia Raddi) and punktree (Melaleuca quinquenervia (Cav.) S. T. Blake), as part of a large restoration project that has been underway for six years in Telegraph Swamp at Babcock Ranch Preserve, a 68,000 acre conservation area in Florida, U.S.A. We found that at the end of the six-year period, for all three species, average live cover did not exceed 5% across all transects. In addition, dead foliar cover was higher than live cover for all three invasive plants, indicating progress towards restoration goals. We also found that percent live cover of Old World climbing fern were significantly reduced only after four or more treatments were applied during the six-year period, as opposed to when three or fewer treatments were applied. Reductions in percent cover of live foliage were apparent only when the treatments were applied more often than biennially, as opposed to less often than biennially. Additionally, we found higher Old World climbing fern cover in clear-cut and replanted cypress stands than in natural stands. Based on these findings, we conclude that treatments applied four or more times, or more often than biennially, were more effective at significantly reducing advanced invasions of Old World climbing fern, Brazilian pepper, and punktree, especially where previous management activities or their effects may have increased the cover of invasive plants.


2007 ◽  
Vol 158 (10) ◽  
pp. 323-330 ◽  
Author(s):  
Anne Boesch ◽  
Jérôme Pellet ◽  
Alain Maibach

The effects of poplar plantations on biodiversity are still unclear. In the current context of converting these plantations into more natural forests, it might be even more important to predict the effects of different conversion strategies on biological richness. Our study evaluated the impacts of the two conversion strategies clear-cutting and non-intervention on three aspects of biodiversity: floristic richness and composition, presence of invasive plants, and presence of woodpeckers. The floristic species richness in clear-cut sites was not significantly higher than in non-intervention sites. In the study, the non-intervention appears more adequate because of its higher resistance to invasive plant species, and by the fact that the non-intervention allows the maintenance of higher loads of dead wood (either standing or on the ground), thus allowing saproxylophagous as well as holedwelling species to find food and shelter at the same location.



2016 ◽  
Vol 1 (1) ◽  
Author(s):  
Sarah Yuliana

<p>Threats on biodiversity in a conservation area can originated from outside or inside the area.  One of the outsiders that rarely noticeable is invasion of exotic species, which usually alters the stability of natural processes within the area. Wasur National Park has some wetland ecosystems that overcome the issues of deterioration in function and benefits due to exotic plant invasion in recent days. This research was carried out to determine priority species that need immediately managements in Wasur National Park.  Field survey and inventory followed by scoring and evaluation methods using Weed Risk Assessment by Exotic Species Ranking System were taken in this research to obtain the priority species. The scoring and ranking steps placed encountered invasive plant species into four categories of management priority based on Significance of Impact and the Feasibility of Control. The result identified 49 species of invasive plants from three wetlands in Wasur National Park, which 75% (or 36 species) of them are species of Priority 3 (lesser threat and easy to control), 4 species of Priority 4 (lesser threat – hard to control) and at least 9 species of Priority 2 (serious threat-hard to control).  Priority 2 species consist of <em>Carex</em> sp., <em>Eleocharis indica</em> (Lour.) Druce, <em>Hanguana malayana</em> (Jack.) Merr., <em>Imperata cylindrica</em> (L.) Beauv., <em>Ludwigia oktovalvis</em> (Jacq.) Raven, <em>Melaleuca cajuputi</em>  Powell, <em>M. leucadendron</em> (Linn.), <em>Paspalum</em> <em>conjugatum</em> P. J. Bergius, and <em>Stachytareta jamaicensis</em> (L.).  These invasive plants need to be managed properly and thoroughly further.</p>



2014 ◽  
Vol 7 (2) ◽  
pp. 360-374 ◽  
Author(s):  
LeRoy Rodgers ◽  
Tony Pernas ◽  
Steven D. Hill

AbstractThe management of exotic, invasive plants is among the most challenging undertakings of natural resource managers, particularly in large, remote landscapes. The availability of information on the distribution and abundance of invasive plants is vital for effective strategic planning yet is often unavailable because of high costs and long procurement times. This paper presents results of a large-scale invasive plant mapping effort in the Florida Everglades utilizing digital aerial sketch mapping (DASM) and evaluates its utility for guiding management decisions. The distribution and abundance (cover) of four priority invasive plant species—Australian pine, Brazilian pepper, melaleuca, and Old World climbing fern—were mapped over 728,000 ha in the Everglades during 2010 to 2012. Brazilian peppertree was the most widely distributed and abundant species, occupying 30,379 ha. Melaleuca was also widely distributed and occupied 17,802 ha. Old World climbing fern occupied only 7,033 ha but its distribution was generally concentrated in heavy infestations in the northern Everglades. Australian pine was the least abundant of the mapped species and tended to be limited to the southeastern Everglades region. DASM proved to be a cost-effective means of obtaining region-wide distribution and abundance information for these species at broad scales (> 500 m), but detection rates and positional accuracy declined at finer scales. Both canopy type (forested vs. unforested) and distance from flight transect appear to be important factors for detection accuracy.



2006 ◽  
Vol 36 (6) ◽  
pp. 1435-1450 ◽  
Author(s):  
Anne K Eschtruth ◽  
Natalie L Cleavitt ◽  
John J Battles ◽  
Richard A Evans ◽  
Timothy J Fahey

Hemlock woolly adelgid (HWA; Adelges tsugae Annand) infestations have resulted in the continuing decline of eastern hemlock (Tsuga canadensis (L.) Carrière) throughout much of the eastern United States. In 1994 and 2003, we quantified the vegetation composition and structure of two hemlock ravines in the Delaware Water Gap National Recreation Area. This is the first study to use pre-adelgid disturbance data, annual monitoring of infestation severity, and annual records of hemlock health to assess forest response to HWA infestation. In 2003, 25% of monitored hemlock trees were either dead or in severe decline. Measures of hemlock decline (crown vigor, transparency, density, and dieback) were correlated with HWA infestation severity and changes in light availability over the study period. Average percent total transmitted radiation more than doubled at these sites from 5.0% in 1994 to 11.7% in 2003. The total percent cover of vascular plants increased from 3.1% in 1994 to 11.3% in 2003. Species richness increased significantly, and more species were gained (53) than lost (19) from both ravine floras over the 9-year study period. Though exotic invasive plants were absent from these ravines in 1994, our 2003 resurvey found invasive plants in 35% of the permanent vegetation plots.



2017 ◽  
Vol 4 (1) ◽  
pp. 148-160
Author(s):  
Arjun C.P ◽  
Anoop V.K ◽  
Tijo K.J ◽  
Anoopkumar T.K ◽  
Roshnath R

Butterfly diversity was recorded from Nov (2013) - May (2014) in Pookode region. A total number of 128 species recorded from the five families; Nymphalidae (46 species) Lycaenidae (28 species), Hesperiidae (22 species), Pieridae (17 species) and Papilionidae (15 species) respectively. During the survey invasive plant species were also recorded. There were 36 species of invasive plants from 18 families identified from the study area. More butterflies were attracted towards nectar offering invasive plants. Chromolaena odorata, Ipomea cairica, Lantana camara, Merremia vitifolia, Mikania micrantha, Mimosa diplotricha, Pennisetumpolystachyon, Pteridium aquilinum, Quisqualis indica and Sphagneticola trilobata were the major invasive plants found in the Pookode region and their flower attracts butterfly for pollination. Even though nectar offered by the plants are supportive for growth, in long run these species can affect butterfly population bydeclining native host larval plant species for butterfly reproduction. Invasive species compete with the native flora and reduce its population. Management practices like physical, chemical and modern bio control measures could be used for eradicating of invasive plants. Wise use of invasive plants for other economical purpose such as bio-fuel, medicinal purpose, bio-pesticide and handicraft could be suggested. Successful management of invasive species are needed for conserving Lepidoptera fauna and other native biota of the area.



2020 ◽  
Vol 6 (1) ◽  
pp. 46-53
Author(s):  
Miftahul Mukarromah ◽  
Ari Hayati ◽  
Hasan Zayadi

Balekambang Beach is the most visited beach destination in Malang Regency until the end of 2015. One of the invasive pathways of invasive plants is Tourism. The purpose of this study was to identify invasive plant species, diversity and compare the value of the diversity index with abiotic factors.This research method is descriptive with systematic sampling techniques using Belt Transect, and measurements of abiotic factors include edafic factors and climatic micro factors. Invasive alien plant species found in the Balekambang coastal forest are identified as seventeen species namely (Hemighraphis glaucescens), (Oplismenus sp), (Amomum coccineum), (Arenga obtusifolia), (Leucaena leucochephana), (Mimosa sp), (Cassia siamea), (Eupatorium odoratum), (Hyptis capitata), (Cynodon dactylon), (Sida rhombifolia), (Synedrella nudiflora), (Chromolaena odorata),  (Leucaena leucochepala), (Mimosa pudica), and (Ruellia tuberosa) with the index value of invasive plant diversity in protected forests and production classified as high compared to mangroves. The results of the diversity index value with abiotic factors showed a positive (+) direction on soil sailinity where the R2 value was 0.5606 or 50%, which means it showed a relationship between soil salinity and an abundance of invasive plants in Balekambang coastal forest area of 50%.  Keywords:invasive plants, Balekambang beach, belt transect, diversity ABSTRAK Pantai Balekambang adalah destinasi wisata alam pantai di Kabupaten Malang yang paling banyak dikunjungi hingga akhir tahun 2015.Salah satu jalur invasi dari tumbuhan invasif adalah Tourism (Wisata). Tujuan dari penelitian ini adalah mengidentifikasi jenis tumbuhan invasif, keanekaragaman dan membandingkan nilai indeks keanekaragaman dengan faktor abiotik. Metode penelitian ini deskriptif dengan tehnik pengambilan sampling secara sistematis menggunakan Belt Transect, dan pengukuran faktor abiotik meliputi faktor edafik dan faktor mikro klimatik. Jenis spesies tumbuhan asing invasif yang terdapat di hutan pantai Balekambang diidentifikasi sebanyak tujuh belas spesies yaitu Hemighraphis glaucescens, Oplismenus sp, Amomum coccineum, Arenga obtusifolia, Leucaena leucochephana, Mimosa sp, Cassia siamea, Eupatorium odoratum, Hyptis capitata, Cynodon dactylon, Sida rhombifolia, Synedrella nudiflora.Chromolaena odorata, Leucaena leucochepala, Mimosa pudica, dan Ruellia tuberose dengan nilai indeks keanekaragaman tumbuhan invasif pada hutan lindung dan produksi tergolong tinggi dibanding mangrove. Hasil analisis uji korelasi nilai indeks keanekaragaman dengan faktor abiotik menunjukkan arah positif (+) pada salinitas tanah dimana nilai R2 sebesar 0.5606 atau 50%, yang artinya menunjukkan hubungan antara salinitas tanah dengan kelimpahan tumbuhan invasif di kawasan hutan pantai Balekambang sebesar 50%. Kata kunci: tumbuhan invasif, pantai Balekambang, belt transect, keanekaragaman



2019 ◽  
Vol 71 (1) ◽  
Author(s):  
Wendy J. Leonard ◽  
O. W. Van Auken

Abstract In the past, grasslands and savannas were common in many areas of south-central Texas, including the San Antonio area. With the advent of European settlers and their livestock, much of this area was converted to agriculture and rangeland. Today, most of San Antonio is developed, but some preservation has occurred. Restored grassland, mechanically cleared of Juniperus ashei (juniper, Ashe juniper) and other woody species in 2013, was examined and compared to adjacent non-cleared woodland. The woodland examined was dominated by Diospyros texana (Texas persimmon) and Juniperus ashei. Richness in the woodland canopy was 15 species. The understory below the canopy had 25 woody species. In the restored grassland area, herbaceous plant cover was 41.8%, woody plant cover 5.8%, bare soil 2.9%, and litter cover 49.5%. Species richness was 71, with 60 herbaceous and 11 woody species (percent cover of each from &lt;0.1–7.1%). The most common species in the restored grassland in descending order were Nassella leucotricha (Texas winter grass), Calyptocarpus vialis (straggler daisy), Carex planostachys (cedar sedge), Sporobolus crypandrus (sand dropseed), D. texana, and Verbesina virginica (frost weed). Several C4 grass species were present with low cover but may increase in abundance over time. Four of the six most common restored grassland species were present below the woodland canopy and 12 woody species were present in the restored grassland as juveniles. Cost of restoration was approximately $38,500 ($7,500 supplies, $31,000 labor).



2020 ◽  
pp. 27-46
Author(s):  
Anja Kalinic ◽  
Ivana Bjedov ◽  
Dragica Obratov-Petkovic ◽  
Jelena Tomicevic-Dubljevic

The floristic diversity of Deliblato sands SNR is significantly endangered by the spread of invasive plants. In addition to field research, which included the collection of plant material in the area of Deliblato sands SNR, primary and secondary data was collected in this paper. The primary data for the purposes of this study was obtained by applying a questionnaire technique to the management of the protected area - PE ?Vojvodinasume? and an expert interview technique to a representative of the Provincial Institute for Nature Conservation. The secondary data was collected to gain a better and broader understanding of the management of Deliblato sands SNR. Based on the field investigations, the analysis of primary and secondary data on invasive plant species was also recognized as a key threatening factor. An analysis of the floristic structure and composition of these plant species, their origin, as well as the manner of their propagation and reproduction was carried out, in order to make a recommendation on the preventive measures for the protection and suppression of invasive plant species and to improve the habitat. In the area of Deliblato sands SNR, 39 invasive plant species (4,33% of the total flora) were found with different invasiveness categories, among which herbaceous, annual, North American species from the Compositae family prevail. Protection measures include the mapping of habitats of invasive species, establishing cooperation with managers and scientific institutions, constant monitoring of endangered habitats and plant species, as well as the creation of a special sector responsible for enhancing biodiversity.



Author(s):  
Johannes J. le Roux

Abstract Microbes are omnipresent, yet their interactions with invasive plants remain understudied. This is surprising, given the importance of microbes in plant community ecology and their influence on plant performance in new environments. Recent advances in molecular genetic approaches have opened the door to studying this unseen majority in great detail and to understand how they fit into ecological interaction networks. Molecular approaches allow rapid assessments of microbial diversity at reasonable cost while providing both taxonomic and evolutionary information. Here I discuss how these approaches have contributed to a better understanding of plant-microbial interactions in the context of biological invasions. By drawing insights from various case studies, I illustrate how next-generation sequencing (DNA barcoding) has revolutionized the way we understand such interactions. Tight-knit and coevolved mutualist (e.g. mycorrhizal) and antagonist (e.g. pathogen) interactions appear particularly promising to understand the structure and function of invasive plant-microbial interaction networks, the impacts of invasive plants on native networks and the vulnerability of native networks to infiltration by non-native species. I also discuss novel ways in which molecular data can aid the study of invasive plant-microbial interactions, such as incorporating phylogenetic data into network analyses to better understand the role of evolutionary history in network dynamics and how such dynamics respond to plant invasions. DNA barcoding of microbes also presents unique challenges to the study of network ecology, such as uncertainty in the legitimacy and efficiency of interactions. Future research should incorporate overall plant-associated microbial communities (microbiomes) into interaction networks to better understand the role microbes play during plant invasions.



Author(s):  
Amy E. Kendig ◽  
S. Luke Flory ◽  
Erica M. Goss ◽  
Robert D. Holt ◽  
Keith Clay ◽  
...  

Abstract Plant-pathogen interactions occur throughout the process of plant invasion: pathogens can acutely influence plant survival and reproduction, while the large densities and spatial distributions of invasive plant species can influence pathogen communities. However, interactions between invasive plants and pathogens are often overlooked during the early stages of invasion. As with introductions of invasive plants, the introduction of agricultural crops to new areas can also generate novel host-pathogen interactions. The close monitoring of agricultural plants and resulting insights can inform hypotheses for invasive plants where research on pathogen interactions is lacking. This chapter reviews the known and hypothesized effects of pathogens on the invasion process and the effects of plant invasion on pathogens and infectious disease dynamics throughout the process of invasion. Initially, pathogens may inhibit the transport of potentially invasive plants. After arrival in a new range, pathogens can facilitate or inhibit establishment success of introduced plants depending on their relative impacts on the introduced plants and resident species. As invasive plants spread, they may encounter novel pathogens and alter the abundance and geographic range of pathogens. Pathogens can mediate interactions between invasive plants and resident species and may influence the long-term impacts of invasive plants on ecosystems. As invasive plants shift the composition of pathogen communities, resident species could be subject to higher disease risk. We highlight gaps in invasion biology research by providing examples from the agricultural literature and propose topics that have received little attention from either field.



Sign in / Sign up

Export Citation Format

Share Document