scholarly journals The morphodynamics of a swash event on an erodible beach

2014 ◽  
Vol 762 ◽  
pp. 110-140 ◽  
Author(s):  
Fangfang Zhu ◽  
Nicholas Dodd

AbstractA high-accuracy numerical solution, coupling one-dimensional shallow water and bed-evolution equations, with, for the first time, a suspended sediment advection equation, thereby including bed and/or suspended load, is used to examine two swash events on an initially plane erodible beach: the event of Peregrine & Williams (J. Fluid Mech., vol. 440, 2001, pp. 391–399) and that of a solitary wave approaching the beach. Equations are solved by the method of characteristics, and the numerical model is verified. Full coupling of suspended load to beach change for Peregrine & Williams (J. Fluid Mech., vol. 440, 2001, pp. 391–399) yields only slightly altered swash flows, depending on beach mobility and sediment response time; a series of similar final beach change patterns results for different beach mobilities. Suspended- and bed-load transport have distinct morphodynamical signatures. For the solitary wave a backwash bore is created (Hibberd & Peregrine, J. Fluid Mech., vol. 95, 1979, pp. 323–345). This morphodynamical bore propagates offshore initially, and leads to the creation of a beach bed step (Larson & Sunamura, J. Sedimentary Petrology, vol. 63, 1993, pp. 495–500), primarily due to bed-load transport. Its height is directly related to bed-load mobility, and also depends strongly on the bed friction coefficient. The shock dynamics of this bed step is explained and illustrated. Bed- and suspended-load mobilities are quantified using field data, and an attempt is made to relate predictions to measurements of single swash events on a natural beach. Average predicted bed change magnitudes across the swash are of the order of 2 mm, with maximum bed changes of up to approximately 10 cm at the bed step.

2013 ◽  
Vol 14 (3) ◽  
pp. 362-370

Systematic measurements of sediment transport rates and water discharge were conducted in the Nestos River (Greece), at a place located between the outlet of Nestos River basin and the river delta. This basin area is about 838 km2 and lies downstream of the Platanovrysi Dam. Separate measurements of bed load transport and suspended load transport were performed at certain cross sections of the Nestos River. In this study, relationships between sediment transport rates and stream discharge for the Nestos River are presented. A nonlinear regression curve (4th degree polynomial curve; r2 equals 0.62) between bed load transport rates and stream discharge, on the basis of 63 measurements, was developed. In addition, a nonlinear regression curve (5th degree polynomial curve; r2 equals 0.95) between suspended load transport rates and stream discharge, on the basis of 65 measurements, was developed. The relatively high r2 values indicate that both bed load transport rates and, especially, suspended load transport rates can be predicted as a function of the stream discharge in the Nestos River. However, the reliability of the regression equations would have been higher if more measured data were available.


2021 ◽  
Vol 2 (1) ◽  
pp. 1-7
Author(s):  
Ramadhan Hidayat Putra ◽  
Amad Syarif Syukri ◽  
Catrin Sudarjat ◽  
Vickky Anggara Ilham

Research on Aepodu Weir Sediment Transport Analysis in South Konawe District, based on observations in the field, Aepodu Weir hasa sediment buildup that has now exceeded the height of the weirlight house. The purpose of the study was to analyze the magnitudeof Aepodu river flow and to analyze the amount of sedimenttransport that occurred in the Aepodu dam. The method used todetermine the amount of bed load transport uses stchoklitscht, whilefor transporting suspended load using forcheimer.The results of the analysis of the average flow of the Aepodu riverwere 3,604 m3/ second. Sediment transport that occurs in Aepoduweir is Bedload transport (Qb) of 291625.771 tons / year, andsuspended load transport (Qs) of 16972,423 tons / year, so that thetotal sediment transport (QT) is 308598,194 tons / year.


Author(s):  
A. D. Stewart

ABSTRACTMass balance equations are derived which link the ratios Ts/ (suspended load/dissolved load from chemical weathering) and Tb/Ts (bed load/suspended load), with any two geochemical components present in the source rock and the alluvial system. If the dissolved load is unknown the ratios can be estimated from the relatively insoluble silica and alumina. The ratio Ts/, which for large river basins depends on climate and relief, can thus potentially be determined from ancient alluvial sequences.The equations help define the source composition of a group of 13 modern rivers for which Ts, and alluvial geochemistry are known. These rivers together drain 27% of the continental surface. For a source area with the average continental sandstone to shale ratio of 0·6 the observed average value of Ts/ is obtained when limestone, sandstone and shale are present in the proportions 6·7:21·6:35·7. The figure of 64% sediment in the source area is very similar to the 66% determined by Blatt and Jones (1975) from geological maps of the continents. The equations also show that average bed load transport rate into these 13 basins is about 27% of total transport, and into the Amazon basin about 37%. Bed load transport rates out of the basins, into the sea, are relatively very small.


1984 ◽  
Vol 41 (4) ◽  
pp. 567-578 ◽  
Author(s):  
R. E. Hecky ◽  
G. K. McCullough

Shoreline erosion added an annual average of 4 × 106 t of mineral sediment per year to Southern Indian Lake (postimpoundment area, 2391 km2) during the first 3 yr of impoundment. This erosion increased sedimentary input to the lake by a factor of 20. The lake retained 90% of this eroded material within its basin, and 80–90% of the retained material was deposited nearshore. Despite the production of extremely fine constituent particle sizes, eroding shorelines generated predominantly large clay aggregates, initially transported offshore as bed load. During bed load transport, abrasion of clay aggregates produced fine particles that became suspended. Over 80% of the suspended load is lost to outflows from the lake because the suspended load is primarily fine silt and clay-sized particles, most of which do not settle even under winter ice cover. The extensive nearshore clay aggregate deposits are temporary, and net deposition in these areas will change to net erosion when input of sediment from eroding shorelines ceases. The effects of shoreline erosion on the lake's sediment regime will persist for decades.


1976 ◽  
Vol 7 (5) ◽  
pp. 293-306 ◽  
Author(s):  
Frank Engelund ◽  
Jørgen Fredsøe

The paper presents a simple mathematical model for sediment transport in straight alluvial channels. The model, which is based on physical ideas related to those introduced by Bagnold (1954), was originally developed in two steps, the first describing the bed load transport (Engelund 1975) and the second accounting for the suspended load (Fredsøe and Engelund 1976). The model is assumed to have two advantages as compared with empirical models, first it is based on a description of physical processes, secondly it gives some information about the quantity and size of the sand particles in suspension and the bed particles.


2001 ◽  
Vol 441 ◽  
pp. 169-193 ◽  
Author(s):  
D. CALVETE ◽  
A. FALQUES ◽  
H. E. DE SWART ◽  
M. WALGREEN

A morphodynamic model is developed and analysed to gain fundamental understanding of the basic physical mechanisms responsible for the characteristics of shoreface-connected sand ridges observed in some coastal seas. These alongshore rhythmic bed forms have a horizontal lengthscale of order 5 km and are related to the mean current along the coast: the seaward ends of their crests are shifted upstream with respect to where they are attached to the shoreface. The model is based on the two-dimensional shallow water equations and assumes that the sediment transport only takes place during storms. The flux consists of a suspended-load part and a bed-load part and accounts for the effects of spatially non-uniform wave stirring as well as for the preferred downslope movement of sediment. The basic state of this model represents a steady longshore current, driven by wind and a pressure gradient. The dynamics of small perturbations to this state are controlled by a physical mechanism which is related to the transverse bottom slope. This causes a seaward deflection of the current over the ridges and the loss of sediment carrying capacity of the flow into deeper water. The orientation, spacing and shape of the modelled ridges agree well with field observations. Suspended-load transport and spatially non-uniform wave stirring are necessary in order to obtain correct e-folding timescales and migration speeds. The ridge growth is only due to suspended-load transport whereas the migration is controlled by bed-load transport.


2000 ◽  
Vol 11 (07) ◽  
pp. 1425-1436 ◽  
Author(s):  
MY. M. CHARAFI ◽  
A. SADOK ◽  
A. KAMAL ◽  
A. MENAI

A quasi-three-dimensional mathematical model has been developed to study the morphological processes based on equilibrium sediment transport method. The flow velocities are computed by a two-dimensional horizontal depth-averaged flow model (H2D) in combination with logarithmic velocity profiles. The transport of sediment particles by a flow water has been considered in the form of bed load and suspended load. The bed load transport rate is defined as the transport of particles by rolling and saltating along the bed surface and is given by the Van Rijn relationship (1987). The equilibrium suspended load transport is described in terms of an equilibrium sediment concentration profile (ce) and a logarithmic velocity (u). Based on the equilibrium transport, the bed change rate is given by integration of the sediment mass-balance equation. The model results have been compared with a Van Rijn results (equilibrium approach) and good agreement has been found.


2012 ◽  
Vol 1 (33) ◽  
pp. 34 ◽  
Author(s):  
Weiming Wu ◽  
Qianru Lin

Nonuniform sediment transport exhibits difference from uniform sediment, even when the mean grain size is the same for both cases. The hiding, exposure, and armoring among different size fractions in the nonuniform bed material may significantly affect sediment transport, morphological change, bed roughness, wave dissipation, etc. It is necessary to develop multiple-sized sediment transport capacity formula to improve the accuracy and reliability of coastal analysis tools. The Wu et al. (2000) formula, which was developed for river sedimentation, is herein extended to calculate multiple-sized sediment transport under current and waves for coastal applications. This formula relates bed-load transport to the grain shear stress and suspended-load transport to the energy of the flow system. It considers the effect of bed material size composition in the hiding and exposure correction factor, which is omitted in many other existing formulas. Methods have been developed in this study to determine the bed shear stress due to waves only and combined current and waves, and in turn to compute the bed-load and suspended-load transport rates using the Wu et al. (2000) formula without changing its original formulation. The enhanced bed-load formula considers the effect of wave asymmetry on sediment transport, calculates the onshore and offshore bed-load transport rates separately and then derives the net transport rate, whereas the enhanced suspended-load formula calculates only the net transport rate due to the limit of available data. The formula has been tested using the single-sized and multiple-sized sediment transport data sets. The formula provides reliable predictions in both fractional and total transport rates. More than half of the test cases are predicted within a factor of 2 of the measured values, and more than 90% of the cases are within a factor of 5. This accuracy is generally reasonable for sediment transport under current and waves, which is very complex and little understood.


Sign in / Sign up

Export Citation Format

Share Document