Detached shear-layer instability and entrainment in the wake of a flat plate with turbulent separating boundary layers

2015 ◽  
Vol 774 ◽  
pp. 5-36 ◽  
Author(s):  
Man Mohan Rai

The near and very near wake of a flat plate with a circular trailing edge, with vigorous vortex shedding, is investigated with data from direct numerical simulations (DNS). Computations were performed for four different combinations of the Reynolds numbers based on plate thickness ($D$) and momentum thickness near the trailing edge (${\it\theta}$). Unlike the case of the cylinder, these Reynolds numbers are independent parameters for the flat plate. The objectives of the study are twofold, to investigate the entrainment process when the separating boundary layers are turbulent and to better understand the instability of the detached shear layers (DSLs). A visualization of the entrainment process, the effect of changing the ratio ${\it\theta}/D$ on entrainment and wake-velocity statistics, and a way of understanding entrainment in a phase-averaged sense via distributions of the turbulent transport rate are provided here. The discussion on shear-layer instability focuses on the role of log-layer eddies in the destabilization process, the effect of high-speed streaks in the turbulent boundary layer in the vicinity of the trailing edge on shear-layer vortex generation rates, and a relationship between the prevalence of shear-layer vortex generation and shedding phase that is a result of an interaction between the shedding process and the shear-layer instability mechanism. A power-law relationship between the ratio of shear-layer and shedding frequencies and the Reynolds numbers mentioned above is obtained. A discussion of the relative magnitudes of the exponents is provided. A second power-law relationship between shed-vortex strength and these two Reynolds numbers is also proposed.

2014 ◽  
Vol 756 ◽  
pp. 510-543 ◽  
Author(s):  
Man Mohan Rai

AbstractThe very near wake of a flat plate with a circular trailing edge, exhibiting pronounced shedding of wake vortices, is investigated with data from direct numerical simulations (DNSs). Computations were performed for two cases. In the first case the Reynolds numbers based on plate length and thickness were $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}1.255 \times 10^{6}$ and $1.0 \times 10^{4}$, respectively. In the second case the two Reynolds numbers were $3.025 \times 10^{5}$ and $5.0 \times 10^{3}$, respectively. The separating boundary layers are turbulent and statistically identical thus resulting in a wake that is symmetric in the mean. The focus here is on the instability of the detached shear layers and the evolution of rib-vortex-induced localized regions of reverse flow. These regions detach from the main body of reverse flow in the trailing edge region and are convected downstream. The detached shear layers intermittently exhibit unstable behaviour, sometimes resulting in the development of shear-layer vortices as seen in earlier cylinder flow investigations with laminar separating boundary layers. Only a small fraction of the separated turbulent boundary layer experiences this instability, and also rolls up into the initial shed vortices. The instability causes a broadband peak in pressure spectra computed within the shear layers. Phase-averaged intensity and shear stress distributions of the randomly fluctuating component of velocity in the very near wake are also provided here and compared with those obtained in the near wake. The distributions of the production terms in the transport equations for the turbulent stresses are also provided.


2001 ◽  
Vol 123 (2) ◽  
pp. 394-400 ◽  
Author(s):  
Ram Balachandar ◽  
D. Blakely ◽  
M. Tachie ◽  
G. Putz

An experimental study was undertaken to investigate the characteristics of turbulent boundary layers developing on smooth flat plate in an open channel flow at moderately high Froude numbers (0.25<Fr<1.1) and low momentum thickness Reynolds numbers 800<Reθ<2900. The low range of Reynolds numbers and the high Froude number range make the study important, as most other studies of this type have been conducted at high Reynolds numbers and lower Froude numbers (∼0.1). Velocity measurements were carried out using a laser-Doppler anemometer equipped with a beam expansion device to enable measurements close to the wall region. The shear velocities were computed using the near-wall measurements in the viscous subregion. The variables of interest include the longitudinal mean velocity, the turbulence intensity, and the velocity skewness and flatness distributions across the boundary layer. The applicability of a constant Coles’ wake parameter (Π=0.55) to open channel flows has been discounted. The effect of the Froude number on the above parameters was also examined.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8327
Author(s):  
Roberto Pacciani ◽  
Michele Marconcini ◽  
Francesco Bertini ◽  
Simone Rosa Taddei ◽  
Ennio Spano ◽  
...  

This paper presents an assessment of machine-learned turbulence closures, trained for improving wake-mixing prediction, in the context of LPT flows. To this end, a three-dimensional cascade of industrial relevance, representative of modern LPT bladings, was analyzed, using a state-of-the-art RANS approach, over a wide range of Reynolds numbers. To ensure that the wake originates from correctly reproduced blade boundary-layers, preliminary analyses were carried out to check for the impact of transition closures, and the best-performing numerical setup was identified. Two different machine-learned closures were considered. They were applied in a prescribed region downstream of the blade trailing edge, excluding the endwall boundary layers. A sensitivity analysis to the distance from the trailing edge at which they are activated is presented in order to assess their applicability to the whole wake affected portion of the computational domain and outside the training region. It is shown how the best-performing closure can provide results in very good agreement with the experimental data in terms of wake loss profiles, with substantial improvements relative to traditional turbulence models. The discussed analysis also provides guidelines for defining an automated zonal application of turbulence closures trained for wake-mixing predictions.


Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 272
Author(s):  
Chenyu Wu ◽  
Haoran Li ◽  
Yufei Zhang ◽  
Haixin Chen

The accuracy of an airfoil stall prediction heavily depends on the computation of the separated shear layer. Capturing the strong non-equilibrium turbulence in the shear layer is crucial for the accuracy of a stall prediction. In this paper, different Reynolds-averaged Navier–Stokes turbulence models are adopted and compared for airfoil stall prediction. The results show that the separated shear layer fixed k−v2¯−ω (abbreviated as SPF k−v2¯−ω) turbulence model captures the non-equilibrium turbulence in the separated shear layer well and gives satisfactory predictions of both thin-airfoil stall and trailing-edge stall. At small Reynolds numbers (Re~105), the relative error between the predicted CL,max of NACA64A010 by the SPF k−v2¯−ω model and the experimental data is less than 3.5%. At high Reynolds numbers (Re~106), the CL,max of NACA64A010 and NACA64A006 predicted by the SPF k−v2¯−ω model also has an error of less than 5.5% relative to the experimental data. The stall of the NACA0012 airfoil, which features trailing-edge stall, is also computed by the SPF k−v2¯−ω model. The SPF k−v2¯−ω model is also applied to a NACA0012 airfoil, which features trailing-edge stall and an error of CL relative to the experiment at CL>1.0 is smaller than 3.5%. The SPF k−v2¯−ω model shows higher accuracy than other turbulence models.


Author(s):  
Christoph Gramespacher ◽  
Matthias Stripf ◽  
Hans-Jörg Bauer

Abstract Heat transfer measurements in transitional flat plate boundary layers subjected to surface roughness, strong pressure gradients and free stream turbulence are presented. The surfaces considered, consist of a smooth reference and twenty six deterministic surface topographies that vary in roughness element aspect ratio, height and density. They are designed to cover the full range of roughness regimes from smooth over transitionally rough to fully rough. For each surface, two pressure distributions, characteristic for a suction and a pressure side turbine vane, are investigated. Inlet Reynolds numbers range from 3.0 · 105 to 6.0 · 105 and inlet turbulence intensity is varied between 1% to 8%. Furthermore, different turbulence Reynolds numbers, i.e. turbulence length scales, are realized while the incident turbulence intensity is kept constant. Additionally, the turbulence intensity and Reynolds stress distributions in the free-stream along the flat plate are measured using x-wire probes. Results show a strong influence of roughness and turbulence intensity on the onset of transition. The new data set is used to develop an improved correlation considering the roughness height, density and shape as well as the turbulence intensity and turbulent length scales.


2014 ◽  
Vol 759 ◽  
pp. 751-781 ◽  
Author(s):  
Eric K. W. Poon ◽  
Andrew S. H. Ooi ◽  
Matteo Giacobello ◽  
Gianluca Iaccarino ◽  
Daniel Chung

AbstractThe flow past a transversely rotating sphere at Reynolds numbers of $\mathit{Re}=500{-}1000$ is directly simulated using an unstructured finite volume collocated code. The effect of rotation rate on the flow is studied by increasing the dimensionless rotation rate, ${\it\Omega}^{\ast }$, from 0 to 1.20, where ${\it\Omega}^{\ast }$ is the maximum sphere surface velocity normalised by the free stream velocity. This study investigates the marked unsteadiness of the flow structures at $\mathit{Re}=500{-}1000$. Comparison with previous numerical data (Giacobello et al., J. Fluid Mech., vol. 621, 2009, pp. 103–130; Kim, J. Mech. Sci. Technol., vol. 23, 2009, pp. 578–589) reveals a new flow regime, namely a ‘shear layer–stable foci’ regime, besides the widely reported ‘vortex shedding’ and ‘shear layer instability’ regimes. The ‘shear layer–stable foci’ regime is observed at $\mathit{Re}=500$ and ${\it\Omega}^{\ast }=1.00$; $\mathit{Re}=640{-}1000$ and ${\it\Omega}^{\ast }\geqslant 0.80$. In this flow regime, the shear layer on the advancing side of the sphere (where the sphere surface velocity vector opposes the free stream velocity) shortens significantly while fluid from the retreating side (opposite to the advancing side) is drawn towards the mid-plane normal to the peripheral velocity. This results in the formation of a stable focus near the onset of the shear layer instability. This stable focus becomes more pronounced with increasing $\mathit{Re}$ and ${\it\Omega}^{\ast }$. It increases the oscillation magnitude and decreases the oscillation frequency of the hydrodynamic forces.


1995 ◽  
Vol 117 (2) ◽  
pp. 298-305 ◽  
Author(s):  
X. Gan ◽  
M. Kilic ◽  
J. M. Owen

The paper describes a combined experimental and computational study of laminar and turbulent flow between contrarotating disks. Laminar computations produce Batchelor-type flow: Radial outflow occurs in boundary layers on the disks and inflow is confined to a thin shear layer in the midplane; between the boundary layers and the shear layer, two contrarotating cores of fluid are formed. Turbulent computations (using a low-Reynolds-number k–ε turbulence model) and LDA measurements provide no evidence for Batchelor-type flow, even for rotational Reynolds numbers as low as 2.2 × 104. While separate boundary layers are formed on the disks, radial inflow occurs in a single interior core that extends between the two boundary layers; in the core, rotational effects are weak. Although the flow in the core was always found to be turbulent, the flow in the boundary layers could remain laminar for rotational Reynolds numbers up to 1.2 × 105. For the case of a superposed outflow, there is a source region in which the radial component of velocity is everywhere positive; radially outward of this region, the flow is similar to that described above. Although the turbulence model exhibited premature transition from laminar to turbulent flow in the boundary layers, agreement between the computed and measured radial and tangential components of velocity was mainly good over a wide range of nondimensional flow rates and rotational Reynolds numbers.


Sign in / Sign up

Export Citation Format

Share Document